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Recent findings suggest that oscillatory alpha activity (7–13 Hz) is associatedwith functional inhibition of senso-
ry regions by filtering incoming information. Accordingly the alpha power in visual regions varies in anticipation
of upcoming, predictable stimuli which has consequences for visual processing and subsequent behavior. In co-
vert spatial attention studies it has been demonstrated that performance correlates with the adaptation of alpha
power in response to explicit spatial cueing. However it remains unknown whether such an adaptation also oc-
curs in response to implicit statistical properties of a task. In a covert attention switching paradigm,we here show
evidence that individuals differ on how they adapt to implicit statistical properties of the task. Subjectswhose be-
havioral performance reflects the implicit change in switch trial likelihood show strong adjustment of anticipa-
tory alpha power lateralization. Most importantly, the stronger the behavioral adjustment to the switch trial
likelihood was, the stronger the adjustment of anticipatory posterior alpha lateralization. We conclude that an-
ticipatory spatial attention is reflected in the distribution of posterior alpha band powerwhich is predictive of in-
dividual detection performance in response to the implicit statistical properties of the task.

© 2013 Elsevier Inc. All rights reserved.
Introduction

When driving down a long and lonesome road, you can probably at-
tend to the road while also talking to your passenger. As you head to-
wards a crowded crossing, you will gradually focus your attention to
the traffic and eventually stop talking to your passenger. After having
passed the crossing you can allow yourself to again attend to your
passenger.

This example illustrates our ability to gradually adjust our attention-
al resources according to the surrounding. This process is likely to be as-
sociated with a gradual engagement and disengagement of brain
regions processing respectively relevant or irrelevant for the task at
hand. We hypothesize that this redistribution of resources is partly
reflected by a differential adjustment of neural oscillations in various
brain regions. Recent findings suggest that oscillatory alpha activity
(7–13 Hz) plays a role in the distribution of attention resources by func-
tional inhibition of sensory regions. This allows for filtering incoming in-
formation (reviewed in Bonnefond and Jensen, 2012; Foxe and Snyder,
2011; Jensen and Mazaheri, 2010; Jensen et al., 2012; Klimesch, 1999,
2012). The main idea is that alpha activity increases in sensory regions
associated with suppression of task-irrelevant information, while
alpha activity decreases in regions processing the task-relevant infor-
mation. For instance, recent studies on visual covert attention have
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demonstrated that alpha power decreases in the parieto-occipital re-
gions contralateral to the anticipated stimuli whereas alpha activity in-
creases relatively in ipsilateral parieto-occipital regions (Worden et al.,
2000). In a visuo-spatial detection task, Thut et al. (2006) demonstrated
that the degree of prestimulus hemispheric alpha lateralization corre-
lated with faster target detections. Kelly et al. (2009) and Händel et al.
(2011) showed that the strength of prestimulus alpha lateralization is
predictive of target discriminability. These studies indicate that hemi-
spheric alpha lateralization correlates with enhanced performance in
spatial attention tasks. Finally, Romei et al. (2010) demonstrated that
TMS can be applied to entrain alpha oscillations over the parietal cortex
ipsi-lateral to the attended direction. Since this entrainment had posi-
tive consequences for performance in a spatial attention task, one can
argue for a causal inhibitory role of the alpha oscillations.

Two recent studies provided strong evidence for alpha power being
under top-down control by demonstrating that prestimulus hemispher-
ic alpha lateralization is influenced by explicit manipulation of the reli-
ability of the spatial cue (i.e. a cue indicating the visual hemifield to
covertly attend to). Haegens et al. (2011) conducted a spatial somato-
sensory discrimination task in which subjects were explicitly informed
about the cue reliability. They found that the reliability of the cue corre-
lated with the prestimulus alpha power lateralization in sensorimotor
regions. A related study was performed by Gould et al. (2011) in the vi-
sual domain. They found a linear increase in alpha lateralization in visu-
al regions with cue reliability. Furthermore, subjects with a stronger
alpha power decrease contralateral to the cue also showed a stronger
behavioral cueing effect as reflected in faster reaction times. These
two studies show that alpha power in both visual and somatosensory
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Fig. 1. The paradigm. The attended side was initially indicated by a cue. Subjects had to
focus at the fixation cross and by button press indicate the color of the attended squares
(left button for red and right button for blue). The 1200 ms prestimulus period was
followed by the colored stimuli flashed for 33 ms. Subjects had to respond within
2500 ms. If there was a color change in the square of the unattended hemifield, attention
had to switch to that direction (‘switch-trial’). After the response there was a 1000 ms
window for eye blinking. A Example of an explicit cue followed by a repeat trial. The sub-
ject had to covertly attend to the left and subsequently report the color of the stimuli by
pressing the corresponding button (here: blue, right button). B Example of a switch trial.
In the previous repeat trials, the subject had to attend to the left, because of the initially
shown spatial cue. Upon stimulus presentation, the subject correctly switched attention
and indicated so by reporting the color of the stimulus at the formerly unattended side
(here: right, red color). If the subject responded according to the formerly attended side
(here: left, blue), the switch trialwould repeat up to four times. Repetitions of switch trials
were removed from the analysis. If the subject did not switch after the fourth consecutive
switch trial, another explicit spatial cue pointing to the formerly unattended sidewas pre-
sented (here: a rightward pointing arrow).

236 J.M. Horschig et al. / NeuroImage 89 (2014) 235–243
regions is modulated by expectations about the likelihood of external
events.

In these paradigms attention biasingwasmanipulated using explicit
cues. In real life, however, attention biasing is oftenmodulated by statis-
tical properties of events in the environment. The aim of our current
study was to assess whether biases in the allocation of attention due
to statistical properties in the environment are reflected in anticipatory
alpha-band lateralization. In a visual covert attention paradigm subjects
were instructed to detect a stream of targets occurring in one hemifield.
However, they had to switch attention to the unattended hemifield
when a stimulus change occurred in the unattended side. The likelihood
of an attention-switch-stimulus (indicating an attention switch trial)
increasedwith the number of trials following the previous switch; how-
ever, the subjects were not explicitly informed about this statistical
property. We assessed the individual change in alpha lateralization
and switch-trial detection rate with switch-trial likelihood. Our study
provides evidence that subjects who adapted their behavior (i.e. switch
trial detection rate) according to the statistical properties of the task
(switch-trial likelihood) also were the ones who adjusted their hemi-
spheric alpha lateralization accordingly.

Materials and methods

Participants

Twenty healthy subjects with normal or corrected-to-normal vision
(mean age: 24 ± (SD) 4 years) participated in the experiment after
providing written informed consent according to the Declaration of
Helsinki and the local Ethics board. The subjects did not have neurolog-
ical or psychiatric disorders. The study was approved by the local ethics
committee (CMO region Arnhem/Nijmegen).

Stimulus presentation and experimental paradigm

Stimulus presentation was performed using Presentation (Neurobe-
havioural Systems, Inc.) and a liquid crystal display video projector
(SANYO PROxtraX multiverse; refresh rate of 60 Hz), back projecting
onto a screen in the magnetically shielded room using two front-
silvered mirrors. The distance to the screen as well as the size of the
displayed screen size were measured individually for each subject.
This allowed us to compute stimulus sizes and distances in visual de-
grees ensuring the same stimulus properties across subjects.

We developed a covert attention switching paradigm based on the
study of van Schouwenburg et al. (2010), see Fig. 1. Squares were
flashed on each side and subjects had to report the color of the attended
square by a button press. When subjects detected a color change at the
unattended side (signaling a switch trial), they had to report the color of
the unattended square (but not the currently attended square) and
switch attention to the unattended side in future trials.

At the beginning of each block, subjects were explicitly cued to
which side to attend. From then on, the attended side was determined
by stimuli properties alone. A central fixation point was presented dur-
ing the entire experiment. Colored squares were flashed 1200 ms after
the beginning of each trial for about 33 ms (two frames = 2/60Hz).
These stimuli were presented with nine degrees eccentricity and two
degrees lower than the fixation cross (measured from the fixation
cross to the center of the stimuli). The squares were two degrees wide.

Subjects had to report the color of the square on the attended side by
pressing a buttonwith their left (for red) or right hand (for blue). On the
unattended side, the square was either gray (repeat trials) or colored in
blue or red (switch trials). Subjects had to respond within 2500 ms.
After responding, the fixation cross turned gray, indicating that the sub-
ject could blink or move the eyes in a 1000 ms period. Then the fixation
cross turned white again indicating the start of the next trial. Subjects
had to keep attention to one hemifield (repeat trial) and report the
color of the square on that side until they detected a colored stimulus
in the unattended hemifield (switch stimulus). A trial which includes
a switch stimulus is called a switch trial. The switch stimuluswas detect-
ed if the color of the unattended target was correctly reported (detected
switch trial). Subjects then had to keep attending the formerly unattend-
ed hemifield until a next switch trial was detected. If a subject failed to
detect the switch stimulus (undetected switch trial), it was repeated
with a randomcolor (blue or red) up to four times.We focused the anal-
ysis on thefirst switch trials, i.e. dismissed switch trials immediately fol-
lowing an undetected switch trial.

The probability of a switch trial was increasing with the number of
trials since the last switch trial (see Fig. 2). The number of trials between
switches was precomputed, so that the sequence of trials was as similar
as possible across different subjects (on average 4.5 trials). We call the
number of trials from the last switch trial Inter-Switch Trial Number
(ISTN). A number of detected repeat trials were required to trigger a
switch trial. When a subject made a wrong response to a repeat trial,
the trial number from the last switch trial was reset. Thus a number of
consecutive correct responses to repeat trials were needed to trigger a
switch trial. This ensured that subjects did not only attend the suppos-
edly unattended side throughout the experiment. The number of re-
sponse errors to repeat trials was, however, very low (b10%, see also
Section 3.1 Behavioral Performance). Our setup resulted in a linear in-
crease in switch trial likelihood with ISTN (see Fig. 2). Subjects were
given a break of at least 2.5 s after every 15th detected switch trial.
After each break, an explicit spatial cue indicated the initially attended
side. Additional explicit spatial cues were provided after four undetected
switch trials and after four errors to repeat trials in between two switch
trials (5.2 ± (SD) 3.9 cues for attention to the left and 5.9 ± (SD) 4.4



Fig. 2. Relation between switch-trial occurrence and Inter-switch trial number (ISTN). A The likelihood that a switch trial would occur (i.e. the hazard rate) was independent of the
attended side, but increased as function of trials since the last switch trial. More repeat trials since the last switch trial made it more likely that the next trial could be a switch trial.
B The likelihood of switch trial occurrences (i.e. the hazard rate) linearly increased with ISTN.
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cues for attention to the right). The experiment was terminated after
the first detected switch trial 60 min after the experiment began.

In order to make the task sufficiently difficult, the intensity of the
stimuli was varied across subjects and trials in an adaptive staircase-
like procedure on a 20-step scale (1: darkest; 20: brightest), starting
at 10 for both the neutral and the colored stimuli. This was done in
the first block (i.e. until the 15th detected switch trial). The intensities
of the neutral and colored stimuli were modulated according to differ-
ent criteria. Repeat trials should be sufficiently demanding while keep-
ing response errors as low as possible. Therefore we kept reducing the
brightness of the colored stimuli to a level in which the subject could
perform the discrimination with no errors. The color intensity was re-
duced by one step after each detected switch trial and if no errors to re-
peat trials were made before. After a response error to repeat trials, the
intensity was increased by one step again. The intensity of the neutral
stimulus was adapted to manipulate the difficulty of switch trials. A
large intensity difference between colored and neutral stimuli makes
detection of switch trials easier (pop-out effect), whereas a similar
intensity results in a harder task and less detected switch trials. We
aimed at a correct response rate to switch trials between 25% and 75%.
After a detected switch trial, the neutral stimulus was increased in in-
tensity by one when less than 25% of all switch trials were detected.
The intensity was decreased by one step when more than 75% of all
switch trials were detected. The twenty levels of stimulus luminance
were visually and mathematically matched according to the CIELAB
specifications (Rubner et al., 1998; Ruzon and Tomasi, 1999). This pro-
cedure resulted in similar intensities across most subjects. Subjects 4,
7 and 18, however, were exposed to a brighter neutral stimulus (levels
11, 9 and 9, respectively, versus levels 2 or 3). Subjects 4 and 7were also
exposed to brighter colored stimuli (contrast levels 9 and 6 versus 1 to
4). These subjects showed no differences in behavioral performance
compared to all other subjects and were thus included in further analy-
sis. Note that the adaptation procedure was only done in the first block
until the 15th detected switch trial. Trials from this block were not in-
cluded in the analyses.

Prior to the experiment, participants received written and verbal
task instructions. Subjects were instructed to prioritize accuracy rather
than speed, but were informed that they should respond within 2.5 s.
They were instructed to detect the color at the cued side, but switch
attention to the uncued side if the color at that side turned from gray
to either blue or red. Subjects were informed that they would receive
no response feedback. The instructions did not inform about the task
statistics. After the instructions, subjects had to complete a short tutorial
on the computer, which explained the paradigm and introduced the
stimuli. To diminish learning effects, subjects performed a short test
run in a separate, acoustically shielded room. The test run had exactly
the same properties as the final experimental run and included 30 de-
tected switch trials (approximately 10 min). Afterwards, participants
were seated upright in the MEG system in a comfortable position.
They were instructed to sit as still as possible while fixating centrally.
In our analysis, as already reported above, we discarded all trials up to
the first experimental break.

Data acquisition

The ongoing brain activity was recorded using a whole-head MEG
system with 275 axial gradiometers (CTF MEG Systems, VSM MedTech
Ltd.) at a sampling frequency of 1200 Hz. After acquisition, data
were resampled at 600 Hz. During the experiment, the subject's head
position was continuously recorded using three coils, one placed at
each ear canal (mounted on earplugs) and one at the nasion (Stolk
et al., 2013). When the subject's head moved such that any coil
was more than 2.5 mm away from its initial position, the head was
realigned during the next break. In addition, an EyeLink 1000 eyetracker
(http://www.sr-research.com) was used to track potential saccades.

Additionally, we acquired individual, high-resolution anatomical
images using a 1.5 T Siemens Magnetom Sonata system (Erlangen,
Germany) with 1 mm isotropic voxel size. To co-register the MEG and
anatomicalMRdata,we used the same earplugs as in theMEGmeasure-
ment with additional vitamin E capsules during the anatomical scan.

Data analysis

We computed the response rate to repeat trials (number of detected
repeat trials divided by total amount of repeat trials), the switch-rate
(number of detected switch trials divided by total amount of switch trials)
and themean reaction time (RT) to repeat and switch trials. Further, we
separated trials into seven bins according to the number of trials from
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image of Fig.�2


238 J.M. Horschig et al. / NeuroImage 89 (2014) 235–243
the last switch trial (i.e. according to the inter-switch trial number,
ISTN). Trials after the seventh ISTN bin were dismissed from further
analysis since the number of trials was too little for further analysis
(less than 16 trials). Also, we dismissed switch trials that immediately
succeeded an undetected switch trial, i.e. we only analyzed switch trials
that were preceded by at least one repeat trial. Note that the switch
trial likelihood for the first ISTN bin is zero, thus there are no measures
of switch trials in ISTN bin 1. All results are reported in the format of
sample mean ± standard deviation.

The MEG data were analyzed using theMatlab-based FieldTrip tool-
box, developed at the Donders Institute for Brain, Cognition and Behav-
iour (Oostenveld at al., 2011). Artifacts were detected in a semi-
automatic fashion, which included visual inspection and trial rejection
based on variance and other measures as implemented in FieldTrip.
We focused artifact rejection in the window from−1 s to 0.5 s relative
to stimulus onset. We excluded trials in which the head position
exceeded 5 mm from the average position throughout the experiment.
Based on the eye-tracker data, we excluded trials with eye saccades ex-
ceeding 3 visual degrees from the fixation cross or eye blinks. On aver-
age around 29% of the trials were excluded, mainly because of eye
blinks ormovements. For the sensor-level analysis, the combinedplanar
gradients of the MEG field distribution were estimated using a nearest
neighbor procedure, similar to the method described by Bastiaansen
and Knösche (2000).

Spectral analysis

We computed the time-frequency representations (TFRs) of power
from 2 to 32 Hz (1 Hz increments) for each trial from a −1.0 s to
0.5 s interval around the stimulus onset. Spectral contentwas estimated
using an adaptive sliding window of four cycles per frequency bin
(e.g. Δt = 400 ms for 10 Hz), which was multiplied with a Hanning
window prior to applying a fast Fourier transform. For further analyses,
we computed the non-time resolved power spectrum from−1 s to 0 s
using a Hanning-tapered Fast Fourier Transform. This time-period was
chosen because our main hypothesis pertained to anticipatory process-
es. From these power spectra we extracted power in the individual
alpha-band (see below) at the sensors of interest.

Alpha modulation index computation

We will refer to the alpha modulation as the difference of power in
the alpha-band between trials in the condition attention left and atten-
tion right in the prestimulus interval. For each subject we calculated the
alpha modulation index (AMI) defined as follows:
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Here,α denotes power in the alpha-band. The subscripts L and R de-
note the sensors of interest over the left and right hemisphere, respec-
tively. The arrow above α denotes the condition, namely attention left
and attention right. Thus, α!L and α!R denote alpha-band power in the
sensors of interest over the left and right hemisphere, respectively, in
the average of all attention right trials.α

←
L andα

←
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with respective attention to the left hemifield. These AMI measures re-
flect themodulation of alpha band activity with respect to spatial atten-
tion to the left and the right. When comparing attention to the left
versus the right, AMIL will be positive, and the AMIR will be negative.
This corresponds to a relative ipsilateral increase and contralateral
decrease in alpha power. Thus, a positive AMI reflects the degree of
hemispheric lateralization and thus attention toward the attended
side (cf. Gould et al., 2011;Haegens et al., 2011; Thut et al., 2006). A neg-
ative AMI reflects a high degree of attention to the sidewhere the switch
stimulus will appear. The attended side changed after each detected
switch trial.

In order to optimize the sensitivity of the analysis, we focused the
analysis on the band around the individual alpha frequency (IAF,
Klimesch, 1999) to which we will refer to as the individual alpha-band
(Thut et al., 2006). The IAF is determined by the peak frequency in the
7–13 Hz spectrum. The individual alpha-band is defined from 4 Hz
below to 2 Hz above the IAF. The average peak frequency across sub-
jects was 10.5 Hz ± (SD)0.64 Hz, which is ~1.5 Hz lower than what
Worden et al. (2000) and Thut et al. (2006) reported, but close to the
findings of Sauseng et al. (2005).

To define the sensors of interest for pre-stimulus analyses, we com-
puted the relative difference in alpha-band power induced by the stim-
ulus (0 to 0.5 s, see Fig. 4A) between attention left and attention right
trials for all repeat trials. We selected twelve sensors with the strongest
positive induced response and twelve sensors with the strongest nega-
tive induced response for the left versus right attention contrast. These
sensors will be referred to as the left and right regions of interest (ROI),
whichwere subsequently used to compute the AMIL, AMIR and AMI per
ISTN.

To assess individual differences in performance, we performed a lin-
ear trend analysis on the above mentioned binning scheme (ISTN),
expecting a linear relationship between the ISTN, AMI and behavioral
measures. We restricted the analysis to a linear trend, because a linear
relationship between explicit instruction cues and behavioral and
neural measures was found by Gould et al. (2011) and Haegens et al.
(2011). Moreover, we also computed a within-subject linear regression
between these measures.

Source analysis

We used a beamforming approach based on an adaptive spatial fil-
tering technique (Dynamic Imaging of Coherent Sources, DICS) to local-
ize the underlying sources of the alpha band activity (Gross et al., 2001;
Schoffelen et al., 2008). The subject specific anatomical brain scanswere
discretized with a resolution of 1 cm. We used a realistically shaped
single shell head model based on the subject specific anatomical
MRI to compute the leadfield per grid point (Nolte et al., 2003). The
beamforming algorithm computes a spatial filter per grid point using
the cross-spectral density matrix obtained from a Fourier transform.
We computed the cross-spectral density matrix based on the interval
from −1 s to 0 s relative to stimulus onset. The Fourier spectrum was
centered on 10 Hz computed using five Slepian tapers (Percival and
Walden, 1993), i.e. a 3 Hz smoothing, resulting in an estimate of
7–13 Hz. To allow averaging over subjects, we normalized subject indi-
vidual head models by inversely warping it to the MNI template brain
(International Consortium for BrainMapping,Montreal Neurological In-
stitute, Canada) using SPM8 (http://www.fil.ion.ucl.ac.uk/spm). Based
on all trials a spatial filter was computed, which we used to estimate
source activity of attention left and attention right trials separately.

Statistical analysis

Statistical analysis of behavioral data was performed using a repeat-
ed measured analysis of variance (ANOVA) using the factors trial type
(repeat or switch trial) and attended hemifield (left or right). For
analysis of reaction times,we additionally included the correct response
rate as a factor. Further behavioral analyses were conducted using
paired t-test.

Statistical significance of neural data was assessed using a non-
parametric cluster-based permutation test (Maris and Oostenveld,
2007). In the cluster-based permutation test, notational significant
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clusters in channel/grid space are detected using a parametric test-
statistic, here the t-statistic thresholded by an uncorrected p-value
(0.05 for sensor level data and 0.025 for source level analysis to get spa-
tially more defined cluster). Then values in channel/grid tiles are
reshuffled randomly between the conditions and the maximum cluster
size per permutation is stored to assess thedistribution ofmaximal clus-
ter sizes. Cluster size is defined as the sumof the t-values in that cluster.
Cluster significance in the original contrast is assessed by comparing
their cluster size with the distribution of the maximal cluster sizes
across permutations. A cluster-based permutation test therefore con-
trols for multiple comparisons. We considered a cluster to be significant
at alpha = 0.05 (two-sided), thus if the cluster size lies above or below
2.5% of the permutation distribution. To determine the regions of inter-
est, we averaged over time and frequency of interest (here−1 s to 0 s,
and 7 Hz to 13 Hz) to yield clusters in channel/grid space. 2000 permu-
tations were used to estimate the distribution of maximal cluster sizes
on sensor level; 5000 permutations were used for the source level data.
Fig. 3.Behavioral results. AMean rate of correct responses to repeat and switch trials averaged o
repeat trials (F(1, 77) = 72.88, p b 0.01) B There was no significant linear trend over ISTN bins
no significant linear trend over ISTN binswith switch-rate (F(5, 95) = 1.0339, p = 0.40). Note
the linear trend analysis starts at ISTN bin 2. D Reaction times to repeat trials were significantly
responses to detected switch trials were faster than to undetected switch trials (t(19) = 3.55,
repeat trials over ISTN bins (F(6, 114) = 5.54904, p b 0.01). A trend analysis without the fir
was no significant linear trend between reaction times to switch trials and ISTN bins (F(5, 95)=
tion purposes, reaction times were normalized by the average reaction time of all trials per sub
cates a significant effect with p b 0.05.
Results

Behavioral performance

The subjects were asked to perform the task described in Fig. 1. We
recorded 1018 ± 98 (mean ± standard deviation) trials per subject
and 722 ± 122 trials were left after artifact rejection; 151 ± 21 of
them were switch trials, i.e. trials which include a switch stimulus (see
Section 2.2). We expected the detection of switch trials to be more
difficult than the detection of repeat trials, i.e. to be associated with lon-
ger reaction times andmore errors (van Schouwenburg, 2010). Figs. 3A
and D provide an overview of the behavioral data for respectively re-
sponse rates and reaction times. A 2-by-2 ANOVA on response rates
with the factors attended hemifield (left or right) and trial type (repeat
or switch trial) revealed a main effect of trial type (F(1, 77) = 72.88,
p b 0.01). On average, subjects responded correctly to 91.2 ± 4.6%
of all repeat trials and detected 64.2 ± 18.7% of all switch trials
ver all subjects and ISTNbins. The correct response rate was lower for switch trials than for
in terms of correct responses to repeat trials (F(6, 114) = 0.8289, p = 0.55). C There was
that the paradigmwas designed so that therewere no switch trials in ISTN bin 1; therefore
lower than to switch trials (F(1, 153) = 14.93, p b 0.01). A post-hoc t-test indicated that
p b 0.01, uncorrected) E There was a significant negative linear trend for reaction time to
st ISTN bin showed no significant trend anymore (F(5, 95) = 0.6585, p = .66). F There
1.7264, p = 0.14). Horizontal lines depict the within-subject regression line. For illustra-
ject before averaging across subjects. *** indicates a significant effect with p b 0.01, * indi-

image of Fig.�3
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(switch-rate) resulting in 105 ± 20 detected switch trials. We did not
find a significant effect of hemifield (F(1, 77) = 0.01, p N 0.9) or a sig-
nificant interaction between the two factors (F(1,77) = 0.14, p N 0.7).

To quantify the reaction time effects, we conducted a 2-by-2-by-2
ANOVA with the factors attended hemifield (left or right), trial type
(repeat or switch trial) and correctness of response. A significant main
effect of trial type (F(1, 153) = 14.93, p b 0.01) revealed that subjects
responded significantly slower to switch trials (995 ± 234 ms) than
to repeat trials (787 ± 148 ms). There was no main effect of hemifield
(F(1, 153) = 0.68, p N 0.4). Furthermore, there was a significant inter-
action between trial type and correctness of response (F(1, 153) =
27.35, p b 0.01). Using a post-hoc t-test we found that reaction times
to detected switch trials were significantly longer than to undetected
switch trials (difference: 131 ± 165 ms, t(19) = 3.55, p b 0.01, uncor-
rected), while reaction times to repeat trials were significantly slower
for correct responses than for errors (−251 ± 147 ms, t(19) = 2.73,
p b 0.05, uncorrected). We conclude that responses to switch trials re-
quired more effort than to repeat trials, independently of the attended
hemifield, as reflected in increased reaction times and reduced response
rates.

The main focus of the study pertained to how subjects adapted to
implicit changes in switch trial likelihood determined by the inter-
switch-trial-number (ISTN), i.e. the number of trials from a previous
switch trial (see Section 2.4). See Table 1 for an overview of the amount
of trials per ISTN bin. For an overviewof the grand average over subjects,
see Figs. 3B and C for repeat trials and E and F for switch trials.

Subjects showed a linear decrease in reaction time for repeat trials
(F(6, 114) = 5.4904, p b 0.01) with ISTN, but this was entirely driven
by the first ISTN bin following attention switches. A trend analysis
without the first ISTN bin showed no significant trend anymore
(F(5, 95) = 0.6585, p = .66). We interpret as an attention switch cost
effect (see e.g.Monsell, 2003) after subjects reallocated spatial attention
and therefore adjusted to task changes. Because of the observed atten-
tion switch cost and because ISTN bin 1 has no switch trials, we con-
ducted all subsequent analyses from ISTN bin 2 onwards. For switch
trials, we hypothesized that the subjects' performance would be rela-
tively low for early and thus unexpected switch trials and but gradually
improve for later switch trials. In the grand average, we did not, howev-
er, find a linear trend between ISTN bin and detection rate of switch tri-
als (F(5, 95) = 1.0339, p = 0.40). There were no other significant
effects in the grand average. Thus, in the data averaged over subject,
we did not find proof of behavioral adjustments to the task statistics.

Prestimulus alpha modulation

We next considered the neuronal mechanism of anticipatory atten-
tion as characterized by hemispheric specific alpha band modulations.
In our main analysis, we focused on the alpha-modulation index
(AMI) by contrasting the alpha power between contra- and ipsilateral
attention for each hemisphere separately and in combination (see
Section 2.6).

Figs. 4A and B show the topographic distribution of the alpha band
modulation, i.e. alpha-band power (7–13 Hz) per sensor when con-
trasting attention left and attention right trials. To determine the
Table 1
Number of trials after artifact rejection per ISTN bin.

ISTN bin Total number of trials Trials, attention left Trials, attention right

1 111.5 ± 17.9 55.3 ± 9.5 56.3 ± 9.1
2 112.8 ± 17.8 55.4 ± 8.6 57.5 ± 10.0
3 109.3 ± 18.7 54.7 ± 9.6 54.6 ± 10.2
4 96.5 ± 18.6 47.6 ± 9.4 48.9 ± 10.0
5 73.0 ± 14.1 35.8 ± 7.6 37.2 ± 7.5
6 51.4 ± 14.1 23.9 ± 6.7 27.5 ± 6.0
7 36.3 ± 11.3 17.2 ± 4.4 19.1 ± 5.0
sensors of interest for later analysis on the pre-stimulus interval, we se-
lected sensors with the strongest induced response to the stimuli in re-
peat trials in the alpha band. The twelve left sensors showing the
strongest positive stimulus induced alpha modulation and the twelve
right sensors showing the strongest negative induced alphamodulation
(Fig. 4A, marked with asterisks) were selected for further analysis to
compute the alphamodulation index (AMI).Wewill refer to these as re-
gions of interest (ROI). The remaining analyses were performed in the
prestimulus interval (depicted in Figs. 4B, C and D). We performed a
source-reconstruction analysis in the prestimulus interval (−1 s to
0 s) and in the alpha-band (7–13 Hz). The analysis on source-level con-
firmed a significant left parieto-occipital power increase (Fig. 4C;
cluster-based permutation test, p b 0.05).

To verify whether the alpha band activity was modulated by atten-
tion in the prestimulus window, we performed a cluster-based permu-
tation test over all sensors. We found one significant cluster over left
parieto-occipital regions in the contrast attention left versus attention
right (p = 0.02). This cluster included eight of the twelve pre-selected
left ROI channels, confirming the appropriateness of the selected ROI.
In the right hemisphere sensors we did not find evidence for significant
anticipatory alpha band modulation with attention. Fig. 4D shows the
time-frequency representation of the left and right ROIs for the contrast
attention left versus attention. In line with the cluster-based permuta-
tion statistics, alpha power appears higher in the left ROI for attention
left compared to attention right. As expected the time-frequency
decomposition shows induced, lateralized activity around 10 Hz at
~200 ms after stimulus onset.

Next, we asked whether the ability to detect switch trials correlated
with themagnitude of alpha power over the left or right ROI. We tested
whether there was a difference between detected and undetected
switch trials when considering the left minus right attention condition
(independent of ISTN bin). We did not find significant differences nei-
ther for the pre- nor for the poststimulus period (cluster-based permu-
tation test, all p N 0.1).

Individual behavioral and neural adaptation to switch trial likelihood

The likelihood that the next trial would have a switch trial increased
with ISTN, i.e. with the number of trials since the last switch trial
(see Fig. 2). We expected subjects to adapt to the implicit change in
switch trials likelihood, whichwill be reflected in behavioral and neural
adaptation. As already reported (Section 3.1), we did not find a system-
atic increase in detection rate with increasing ISTN on grand average
level. Next, we computed the power spectra for the trials in each ISTN
bin in the prestimulus interval and subsequently computed the AMI
(the alpha modulation combined over the left and right ROI; see
Section 2.6) per ISTN bin. In this analysis we neglected the first ISTN
bin to reduce influences from attention switch costs (see Section 3.1).
As for the behavioral analysis, we performed a linear trend analysis be-
tween the AMI as a function of ISTN bin, but found no significant effects
in the grand average (F(6, 114) = 0.2830, p = 0.94). In the grand aver-
age alpha-modulation topography (Fig. 4B) we foundmainly left hemi-
spheric modulation; however the left hemisphere AMI (AMIL) did not
systematically change with ISTN either (F(6, 114) = 0.955, p = 0.46).
We additionally tested whether resetting the ISTN (see Materials and
methods section) after an incorrect response to a repeat trial might
have caused the lack of significant effects in the grand average. The
ISTN resets could potentially have introduced variability into subjective
probabilities. To do so, we again conducted the linear trend analysis
of the alpha modulation index with ISTN bins, but removed blocks of
trials with errors to repeat trials. The trend remained non-significant
(F(6, 114) = 0.4973, p = 0.81). Importantly, we observed that
the ability to detect the implicit likelihood of events strongly differed
across participants. We computed the switch-rate for each ISTN bin
and all subjects. Then, we correlated the switch-rate per ISTN bin with
the switch-trial likelihood per ISTN bin (see Fig. 2) for each subject.



Fig. 4. Alpha modulation and ROI selection. All plots show the contrast of attention left versus right repeat trials; grand-average. A Topographic map of stimulus-induced alpha-band
(7–13 Hz) modulation for all repeat trials (t = 0 to 0.5 s). The twelvemost sensitive sensors on the left and on the right hemisphere in the induced alpha-band responsewere selected for
further analysis (markedwith asterisks). B Topographic map of prestimulus alpha-bandmodulation for all repeat trials (t = −1 to 0 s). C Source reconstruction of the prestimulus alpha
(7–13 Hz)modulation (t = −1 s to 0 s). Only the significant cluster from thepermutation test is depicted (p b 0.05). D Time–frequency representation of power of the alphamodulation
for the left and the right ROIs, respectively. The box (dotted lines) shows the frequency range chosen for A, B and C and the chosen prestimulus interval for all further analyses aswell as for
B and C.

241J.M. Horschig et al. / NeuroImage 89 (2014) 235–243
Next, we built the 95%-confidence interval (CI) around the mean of all
correlation coefficients and investigated how many correlation coeffi-
cients were outside this interval. The confidence interval ranged from
−0.09 to 0.45. We found eight subjects with a correlation coefficient
below the lower bound of the CI and ten subjects with a correlation co-
efficient above the upper bound of the CI. Due to thewide spread of cor-
relation coefficients, we concluded that there were large inter-
individual differences in behaviorally adjusting to the parameters of
the task.

Next, we askedwhether the behavioral adjustment can be explained
by an adjustment of posterior alpha modulation. To quantify this, we
computed for each subject the regression slopes of the behavioral per-
formance and of the AMI with respect to ISTN bins. We hypothesized
that subjects with a more pronounced behavioral task adjustment
(i.e. a better ability to detect switch trials) also adapted their alpha activ-
ity to the properties of the task. In other words, we expected a signifi-
cant negative inter-subject correlation of these two regression slopes
(better task performance should result in more attention to the unat-
tended hemifield, thus a weaker AMI). The regression slope–slope
correlation analysis revealed that an adaptation of the AMI to the task
statistics does have these behavioral effects. Fig. 5A shows the slope
of switch-rate (y-axis) as a function of the slope of the alphamodulation
index (x-axis) revealing a significant negative correlation (r2 = 0.3096,
p = 0.01). The change in switch-rate is not explained by individual dif-
ferences in speed-accuracy trade-off because there was no significant
correlation between slope of AMI and reaction time for switch trials
(r2 = 0.0190, p N 0.5, Fig. 5B). For repeat trials, we did not find sig-
nificant correlations, neither for the slope of the correct response
rate (r2 = 0.0909, p N 0.1) nor for the slope of reaction times
(r2 = 0.0056, p N 0.7). Also the number of ISTN resets per subject was
not correlated with the switch rate slope (r2 = 0.0803, p N 0.2) or
with the AMI slope (r2 = 0.1429, p N 0.1). The result remained
significant when we included the AMI data from the first ISTN bin
(switch-rate: r2 = 0.2098, p = 0.04), while reaction times to switch
trials stayed not significant (switch trials RT: r2 = 0.0082, p N 0.7).
Also for repeat trials, results stayed not significant when including the
first ISTN bin (correct response rate to repeat trials: r2 = 0.0264,
p N 0.4; repeat trial RT: r2 = 0.0255, p N 0.5). In short, this analysis
demonstrates that subjects that adapted their alphamodulation accord-
ing to the task statistics also detectedmore switch trials with increasing
ISTN. Likewise, subjects that did not adapt the alpha modulation got
worse at detecting the switch trials with increasing ISTN.

Discussion

In a covert attention switching paradigm, we have investigated how
subjects adapt to statistical properties of the environment; here a linear
increase in the likelihood of stimuli prompting a switch in spatial atten-
tion. We found individual differences in how subjects adjusted behav-
iorally to the increase in switch trial likelihood. Interestingly, the
individual degree of adjustment of posterior alpha band lateralization
to switch trials likelihood predicted howwell subjects adjusted their be-
havior. We conclude that anticipatory alpha band lateralization reflects
the allocation of spatial attention asmodulated by the implicit statistical
properties of the environment.

The posterior alpha rhythm reflects the state of anticipatory visual attention

Recent studies have shown that alpha power is modulated in antic-
ipation of upcoming stimulus (e.g. Bonnefond and Jensen, 2012;
Rohenkohl and Nobre, 2011; Thut et al., 2006; van Ede et al., 2012;
Worden et al., 2000). Two recent studies suggest that this anticipatory
alpha rhythm is modulated according to properties of the environment
in both the visual and the somatosensory system (Gould et al., 2011;
Haegens et al., 2011). In both studies, there was significantly stronger
hemispheric alpha lateralization for highly reliable as compared to

image of Fig.�4


Fig. 5. Regression slope–slope correlations across subjects when relating the AMI to behavioral measures. A Correlation of AMI slopes and switch-rate slopes. The slopes of switch-rate
correlated stronglywith the slopes of theAMI (r2 = 0.3096, p = 0.01). A subjectwith a negative AMI slope and a positive switch-rate slope suggests that this subject adjusts to the implicit
change in switch trial likelihood. A subject with the opposite pattern (positive AMI slope and a negative switch-rate slope) suggests that this subject did not adjust properly to the implicit
change in switch trial likelihood. Thus, subjects that adapted their AMI to the task statistics were also those who got better in switching with increasing ISTN. B Correlation of AMI slopes
and switch-trial reaction time slopes. There was no significant correlation between AMI slopes and slopes of switch trial reaction time (r2 = 0.0190, p N 0.5).
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unreliable cues. Complementary to these earlier reports, we show that
top-downmodulation of posterior alpha power does not require explic-
it knowledge about stimulation likelihood. Instead, the brain adapts
implicitly to statistical properties of the environment which then is
reflected in the spatial distribution of alpha power preceding the stimu-
lus. Crucially, we found that the strength of pre-stimulus alpha power
predicted the magnitude of behavioral adjustment in individual sub-
jects. This demonstrates that subjects who manage to adjust alpha
power lateralization appropriately to the statistics of the environment
are able to optimize their individual behavioral performance.

In the grand average of the prestimulus interval, we found a signifi-
cant modulation over the left hemisphere but not over the right hemi-
sphere. In the somatosensory domain, a similar effect has been found
for uninformative spatial cues during a covert attention task (Haegens
et al., 2011). In the visual domain, this difference between the left and
right hemisphere is consistent with the classical visuospatial model of
Heilman and van den Abell (1980) that posits that left parietal regions
process right hemifield visual input, whereas right parietal regions pro-
cess both hemifields (reviewed in Sack, 2009). As such the model pre-
dicts that the left hemisphere will be more strongly modulated than
the right when spatial attention is changed between hemifields. This
notion is directly supported by a TMS study that perturbed either the
left or right inferior parietal sulci (IPS) and then characterized the
prestimulus alpha-band activity in a covert attention task (Capotosto
et al., 2012). They found that interfering with the right IPS resulted in
a bilateral increase in anticipatory alpha-band power over occipital cor-
tex and consequent performance deficits, whereas stimulation of left IPS
did not. Similarly, Sauseng et al. (2011) used TMS to perturb the left and
right FEF and found that only disturbing the right FEF reduces fronto-
parietal coupling in the alpha-band and impairs performance during vi-
sual spatial attention shifting. Thus, the right hemisphere might have a
more global contribution during allocation of spatial attention, which
explains the lack of modulation over the right hemisphere when con-
trasting attention to the left versus right hemifield.

Behavioral performance, stimulus intensity and motivation

We found a significant correlation between posterior alpha power
and performance in terms of attention switching. It is important to
note that subjects were encouraged to prioritize accuracy over reaction
times (RTs). This could explain why alpha power and reaction times did
not correlate in contrast to previous reports (e.g. Gould et al., 2011;
Kelly et al., 2009; Thut et al., 2006). We did however demonstrate a re-
lation between performance and the ability to modulate prestimulus
alpha power. In particular we found that the individual degree of
alpha adjustmentwas correlatedwith performance changes. This differ-
ence could be explained by some subjects relying on detecting the stim-
ulus driven appearance of switch trials rather than on the statistics of
switch-stimuli likelihood. In our paradigm, stimulus intensitieswere in-
dividually adjusted for each subject (see Section 2.2). To test if differ-
ences in stimuli intensity explained the effects, we asked whether the
relative difference in intensity between the neutral and the colored
stimulus was correlated with the AMI slope or switch-rate slope over
ISTN but this was not the case for the AMI slope (r2 = 0.0703,
p N 0.2) nor for the switch-rate slope (r2 = 0.0575, p N 0.3). Another
possible explanation might be that subjects who did not adjust the
hemispheric alpha lateralization according to target likelihood did not
understand the task or were less motivated. This would imply that
non-adaptive subjects had worse performance. We therefore tested
whether subjects with a positive AMI slope over ISTNs had a lower
detection rate of repeat trials than subjects with a negative AMI slope;
however, this was not the case (t(18) = −1.1212, p N 0.2). A similar
analysis considering the switch-rate also showed no significance
(t(18) = −0.695, p N 0.5). Thus while some subjects were better able
at adapting to the implicit task design, this was not explained by differ-
ences in behavioral performance or by motivational factors.
Which networks might control the posterior alpha power?

We have shown that posterior alpha power is modulated in a top-
down manner by incorporating implicit statistical knowledge about
the environment. Direct top-down control on visual attentionmost like-
ly stems from the frontal eye fields (FEF) via the intraparietal sulcus
(IPS), which are part of the dorsal attention network (see Corbetta
and Shulmann, 2002; Kastner and Ungerleider, 2000). Capotosto et al.
(2009) used transcranial magnetic stimulation (TMS) to perturb the
FEF and IPS during the preparation interval in a covert attention para-
digm. They found that this perturbation not only impaired detection
performance, but also the task-modulated parieto-occipital alpha-
band power. This study indicates that FEF and IPS are causally involved
in the control of posterior alpha-band power.
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Apart from neocortical connections, the FEF are also strongly con-
nected to subcortical regions such as the superior colliculus (SC)
(reviewed in Hikosaka et al., 2000; Munoz and Everling, 2004). Beside
its involvement in saccade preparation and execution, the SC is sensitive
to behaviorally important, salient events (Comoli et al., 2003; see
Boehnke and Munoz, 2008 for a review) and is therefore likely to be
engaged in subjects performing our paradigm. Furthermore, both
the SC and the FEF are strongly connected to the basal ganglia
(Hikosaka et al., 2000; Neggers et al., 2012). In a recent fMRI study,
van Schouwenburg et al. (2010) found that the BOLD signal in the
basal ganglia (BG) increased when a visual stimulus successfully pro-
duced a switch in visual attention. Thus, the BG is likely to be part of
the network engaged in the current study. van Schouwenburg et al.
(2010) also found strong modulation of the inferior frontal gyrus (IFG)
in response to salient stimulation changes. Further investigations are
required to study the involvement of above mentioned regions and to
establish the link between fronto-striatal networks and posterior
networks. For such investigations, animal electrophysiology or fMRI re-
cordings might bemore sensitive than MEG recording due to their high
spatial resolution.

Conclusion and future work

We found that anticipatory spatial attention is reflected in the distri-
bution of posterior alpha band power which is predictive of individual
detection performance in response to environmental task statistics.
The hypothesis that alpha power reflects the anticipatory attention
state of the subject could be applied in neurofeedback paradigms. Re-
cently it has been shown that ADHD patients show a lack of sustaining
a high degree of alpha lateralization (ter Huurne et al., 2013). A
neurofeedback paradigm could aim at optimizing the subject's aware-
ness of their state of attention by providing online feedback using a
measure reflecting the posterior alpha power lateralization. This could
be used in setup directly training the subjects' ability to modulate
their alpha band activity.
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