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A B S T R A C T

Preparing for a mentally demanding task calls upon cognitive and motivational resources. The underlying neural
implementation of these mechanisms is receiving growing attention because of its implications for professional,
social, and medical contexts. While several fMRI studies converge in assigning a crucial role to a cortico-sub-
cortical network including Anterior Cigulate Cortex (ACC) and striatum, the involvement of Dorsolateral
Prefrontal Cortex (DLPFC) during mental effort anticipation has yet to be replicated. This study was designed to
target DLPFC contribution to anticipation of a difficult task using functional Near Infrared Spectroscopy (fNIRS),
as a more cost-effective tool measuring cortical hemodynamics. We adapted a validated mental effort task, where
participants performed easy and difficult mental calculation, and measured DLPFC activity during the antici-
pation phase. As hypothesized, DLPFC activity increased during anticipation of a hard task as compared to an
easy task. Besides replicating previous fMRI work, these results establish fNIRS as an effective tool to investigate
cortical contributions to anticipation of effortful behavior. This is especially useful if one requires testing large
samples (e.g., to target individual differences), populations with contraindication for functional MRI (e.g., in-
fants or patients with metal implants), or subjects in more naturalistic environments (e.g., work or sport).

1. Introduction

Humans face cognitively challenging situations on a daily basis.
Preparing for such tasks and successfully accomplishing them requires a
great deal of cognitive effort, making it a core component of motivated
behavior. Several studies investigated cost-benefit trade-offs in deci-
sion-making (Apps et al., 2015; Westbrook et al., 2013), and neuroi-
maging evidence showed that anticipating to have to perform a difficult
task relies on a cortical-subcortical brain network, which partially
overlaps with regions implicated in anticipation of reward, including
the medial Prefrontal Cortex (MPFC, including dorsal Anterior Cingu-
late Cortex, dACC) and striatum (Chong et al., 2017; Prévost et al.,
2010; Westbrook and Braver, 2013, 2015). These regions are implicated
in preparing for effortful performance (unconfounded by motor or de-
cision-making factors), showing increased neural activity when pre-
paring for a harder task. For example, this is the case when participants
prepare for upcoming mentally demanding arithmetic problems
(Vassena et al., 2014) or perceptual discrimination (Krebs et al., 2012).
This evidence is often interpreted as indexing proactive control, i.e. top-
down deployment of attentional control to ensure successful perfor-
mance (Braver, 2012). Recently, computational frameworks have been

proposed where MPFC activity would reflect the value of engaging in an
effortful task to the extent that it can lead to a reward (Holroyd and
McClure, 2015; Holroyd and Yeung, 2012; Shenhav et al., 2013;
Verguts et al., 2015), or the monitoring processes detecting the fre-
quency of occurrence of motivationally relevant variables (Vassena
et al., 2017a). Notwithstanding the different computational im-
plementation, all accounts agree in assigning to MPFC a crucial role in
mechanisms underlying effortful behavior. Interestingly, a few studies
have also suggested that correctly performing a task (especially when
more demanding) may be rewarding in itself (Lutz et al., 2012;
Satterthwaite et al., 2012; Schouppe et al., 2014), and that some of the
abovementioned regions are implicated in these processes as well, in
line with social psychology theory on intrinsic motivation (Bandura and
Cervone, 1983).

Dorsolateral Prefrontal Cortex (DLPFC) is also implicated in pre-
paring for cognitively demanding tasks. DLPFC activity is generally
observed during higher-level cognitive processing (Miller and Cohen,
2001), such as working memory updating, goal maintenance and task
set representation. According to recent theories, DLPFC indeed main-
tains abstract information about task-related rules, instructions or
context (Alexander and Brown, 2015; Koechlin and Summerfield, 2007;
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Nee and Brown, 2012) especially when the appropriate behavioral re-
sponses is not a simple reaction to a stimulus, but requires considera-
tion of the current task-set. Furthermore, it has been suggested that
DLPFC plays the role of cortical integrator, combining stimulus and
context-related information with temporal information about the task,
to ensure successful task performance (Badre and Nee, 2018). One re-
cent study showed that MPFC coding of reward expectation seems to
drive strategy selection in DLPFC, which in turn regulates MPFC ac-
tivity (Domenech et al., 2017). This dynamic provides theoretical
support for DLPFC role in learning how to deploy control when reward
is available. Therefore, as DLPFC and MPFC interact in guiding
strategy-selection according to reward prospect, comparable dynamics
may be hypothesized in the context of preparing for a more effortful
task.

In an earlier study using functional MRI (fMRI) we provided pre-
liminary evidence that effort anticipation implicated DLPFC (Vassena
et al., 2014). More specifically, DLPFC was more active when expecting
to perform a difficult (i.e., mentally effortful) task, as compared to an
easy task. The goal of the current study was to independently replicate
anticipation of effort in DLPFC with a novel and promising measure-
ment technique. The use of functional Near-Infrared spectroscopy
(fNIRS) is rapidly growing in cognitive and social neuroscience (Balconi
and Vanutelli, 2017), as it allows measuring cortical variations in re-
gional blood oxygenation levels in a comparable way to fMRI, but
without a number of downsides that MRI has. In particular, fNIRS
technology does not involve a strong magnetic field nor gradients. As a
consequence, contraindications for participation due to the magnetic
field do not apply. Furthermore, the fNIRS machinery (and its use) has a
much lower cost than an MRI machine. Because of these two reasons,
one can test a larger sample of participants, with lower cost, including
patients and other subjects with (non MR-compatible) metal implants,
children, and babies (who normally do not undergo fMRI strictly for
research purposes), and in more ecological context (as the equipment is
portable, Ayaz et al., 2013; Balardin et al., 2017). Finally, motion ar-
tifacts are less problematic with fNIRS, which makes it an interesting
tool to test hypotheses in domains where movement is required
(Metzger et al., 2017; Pinti et al., 2015); a relevant example in the
current context would be physical effort (where participants are nor-
mally required to move to exert force). One final noteworthy advantage
is that subjects can be tested simultaneously and while interacting,
making it an ideal tool for social neuroscience experiments (Balconi and
Vanutelli, 2017)

Exploiting these advantages to investigate cortical contributions to
anticipation of difficulty (and subsequent preparation for mental effort)
requires establishing fNIRS as a reliable measurement method of cor-
tical (prefrontal) activity, by replicating cortical hemodynamic effects
observed with fMRI. We therefore adopted fNIRS to investigate the
contribution of bilateral DLPFC during anticipation of an effortful tasks.
We adapted a mental effort task from previous studies (Vassena et al.,
2014, 2015). Participants were presented with cues indicating if the
upcoming task was going to be easy or hard. We measured oxygenated
hemoglobin dynamics in 26 measurement channels covering frontal
cortex. Moreover, we tested whether DLPFC sensitivity to task demand
during effort anticipation was bilateral or unilateral (lateralized to one
hemisphere). Importantly, as a first attempt to validated DLPFC con-
tribution to effort anticipation with fNIRS, difficulty was the only factor
manipulated in this design. In contrast, in our previous fMRI study
(Vassena et al., 2014) reward magnitude and delay to reward were also
investigated. In this sense, the main goal of the current paradigm was to
validate fNIRS as a measure of difficulty anticipation, and lay the
grounds for using the same technique to study the interaction between
difficulty and reward processing (such as magnitude and delay effects)
in future studies.

2. Materials and methods

2.1. Participants

Twenty undergraduate students from Ghent University participated
in this study (mean age 20.1 ± 2.74 years, 13 females, 9 left handed),
receiving one study credit as compensation to participate in the study.
Written informed consent was obtained from all participants prior to
participation. The study protocol was approved by the Local Ethics
Committee of Ghent University. After data collection, one participant
was excluded from further analysis due to technical failure. Sample size
was determined based on previous studies using fNIRS to investigate
cognitive function (Causse et al., 2017; Ferreri et al., 2014; Nakahachi
et al., 2008). This was confirmed by an a-priori power calculation, to
achieve 80% power to detect a medium-large effect size (η2 = .10) for a
within-factor comparison in a repeated-measures analysis (Foul and
Erdfleder, 2007).

2.2. Experimental procedure

We examined difficulty-related hemodynamic cortical activation
while participants performed a task consisting of easy and difficult ar-
ithmetic calculations (Fig. 1).

The procedure consisted of one block with 130 trials, of which 65
were easy trials and 65 were difficult trials. Easy and difficult trials
were randomly intermixed. At the beginning of every trial, a cue was
presented for 1000ms, indicating if the upcoming trial was going to be
easy (a blue square) or difficult (a magenta square), followed by a
screen showing the symbol # at fixation with a pseudo-exponentially
jittered duration (range 2.2–8 s, mean 4 s). Subsequently, the task was
presented. In an easy trial, the task consisted of a sequence of two ar-
ithmetic operations, with three small numbers shown on subsequent
screens (e.g., 3+ 1+1). Each number remained on the screen for
800ms, and first and second number were followed by a blank screen
(600ms). In a difficult trial, the task consisted of a sequence of more
difficult arithmetic operations with three larger numbers shown on
subsequent screens (e.g., 8+ 15 – 6, same timing as easy trials, but
requiring carrying and borrowing at each operation). We adapted this
procedure from previous experiments, as it elicits a reliable and large
difficulty effect (Vassena et al., 2014, 2015). After the arithmetic pro-
blem, two possible results were presented on the screen, and partici-
pants had to select the result they thought to be correct, by pressing
either a left or a right button (F or J on the keyboard, response time
limit 1500ms). The response was followed by a feedback screen, which
could be correct (showing the Dutch word “correct”), incorrect
(showing the Dutch word “fout”) or too late (showing the Dutch words
“te laat”). The feedback was followed by a 500ms blank screen, and a
pseudo-exponentially jittered inter-trial interval, with a screen showing
the # symbol at fixation (range 2.2–8 s, mean 4 s). Participants were
instructed to be as fast and accurate as possible. Before starting the
experimental block, 8 training trials were administered. During the
training only, at the end of every trial participants were asked to rate
the trial on perceived difficulty and pleasantness. The questions were
presented on the screen one by one (randomized across participants)
and participants were asked to respond by pressing the number corre-
sponding to their response on the keyboard. The difficulty question
asked how difficult that trial was for them (on a visual 7-point scale,
with 1 meaning very easy and 7 meaning very difficult). The plea-
santness question asked how much they liked to perform that trial (on a
visual 7-point scale, with 1 meaning not at all and 7 meaning very
much). This procedure has been used in previous studies to confirm
subjective perception of difficult trials as more difficult (Vassena et al.,
2014, 2015).
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2.3. Questionnaires

Participants filled in the Positive And Negative Affect Scales
(PANAS, Watson et al., 1988) twice, before and after the experimental
session. The goal of this procedure was to measure changes in affective
state, and test whether such changes may be related to task difficulty
(by testing the correlation with accuracy and reaction times at the task).
At the end of the session, participants also filled in the Need for Cog-
nition scale (short version, Cacioppo et al., 1984), assessing how much
participants enjoy engaging in mentally demanding endeavors, and the
BIS-BAS scale (Carver and White, 1994), assessing participants’ beha-
vioral inhibition and activation tendencies.

2.4. fNIRS methods

We used the continuous-wave NIRS system (NIRScout; NIRx
Medical Technologies, Brooklyn, NY) utilizing two wavelengths of near-
infrared light (760 and 850 nm). Data were acquired from the pre-
frontal cortex with 5 sources and 5 detectors per hemisphere, covering
the lateral and medial PFC. The distance between each source-detector
pair was 3 cm, which provides an adequate compromise between depth
sensitivity and signal to noise ratio (Strangman et al., 2013). An a-priori
DLPFC region-of-interest (ROI) was anatomically determined, by visual
inspection of optode locations projected on a 3D MNI atlas (Fig. 2,
Okamoto et al., 2004a), and by convergence of such locations with
previously reported DLPFC activity in a comparable task (Vassena et al.,
2014). The DLPFC-ROI included the channels F5-F3, F5-FC5, FC3-F3
and FC3-FC5 (the first label of each pair is the sender, the second label
is the receiver). This approach had one main limitation: our procedure
did not include neuronavigation with the subject-specific MRI scan,
thus preventing from projecting specific MNI coordinates to the sub-
ject's adapted cortical coordinates. However, given the spatial resolu-
tion of the current fNIRS setup, and the large extent of DLPFC activity
reported in above-mentioned studies, it seems plausible that a finer
anatomical characterization would be difficult to achieve (and not ne-
cessary for the current purpose). Fig. 2 shows the channel configura-
tion.

3. Data analysis

3.1. Behavioral data analysis

A paired-sample t-test was performed on reaction times (RTs),
comparing easy vs. difficult trials. A second paired-sample t-test was
performed, comparing accuracy in the easy vs. difficult trials. Reported
significance values are two-tailed.

We calculated the difference between positive and negative PANAS
scores by subtracting scores at the beginning of the session from the
scores at the end of session. Subsequently, these differences for positive
and negative PANAS separately were correlated with accuracy and RTs
at the task, to test potential influences of difficulty (as measured by
indexes of task performance) on affective state. Performance was also
correlated with difficulty and liking ratings. Furthermore, we calculated
Need for Cognition and BIS-BAS scores, to test the relationship between
task performance and attitude towards mental effort and behavioral
inhibition and activation. One should note that these correlational
analyses were exploratory in nature.

3.2. fNIRS data preprocessing

We analyzed the optical data using Homer2 NIRS processing
package functions (Huppert et al., 2009) based on MATLAB (Math-
works, MA USA). For every participant, the raw optical intensity data
series were converted into changes in optical density (OD). Then PCA
was performed, which automatically adjusts the amount of variance to
be removed from the data on a subject-by-subject basis. A PCA para-
meter of 80% was chosen as it is more conservative and removes only
the variance supposed to account for the motion artifacts (Brigadoi
et al., 2014). Then a motion detection algorithm was applied to the OD
time series to identify residual motion artifacts (AMPthresh= .5,
SDThresh=50, tMotion= .5 s, tMask=1 s). This means that if, over a
temporal window of length .5 s, the standard deviation increases by a
factor exceeding 50, or the peak-to-peak amplitude exceeds .5, then the
segment of data of length 1 s starting at the beginning of that window is
defined as motion. Stimuli with artifacts from the HRF calculation were
excluded if any artifact appeared 5 s before the stimulus appearance,
and 10 s after. Low-pass filtering with a cut-off frequency of .5 Hz was

Fig. 1. Task and behavioral performance. a.
Task structure. Each trial started with a cue
indicating if the upcoming task was going to be
easy (blue square) or difficult (magenta
square). After a jittered interval, two sub-
sequent operations (additions or subtractions)
were presented on the screen, followed by two
possible results. Participants had to indicate
the response they thought to be correct by
pressing right or left response button, and re-
ceived performance feedback. Subsequent
inter-trial interval was also jittered. b. Reaction
times for responses in easy as compared to
hard trials. c. Accuracy of the responses for
easy as compared to hard trials. Error bars re-
present± one standard error of the mean.
Responses to easy trials were significantly
more accurate and faster than hard trials. (For
interpretation of the references to color in this
figure legend, the reader is referred to the web
version of this article).
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applied to the data in order to remove variability due to the cardiac
cycle. The OD data were then converted into concentration changes
using the modified Beer-Lambert law (Cope and Delpy, 1988; Delpy
et al., 1988) with the differential path length factors set to .6. This
method enabled us to calculate signals reflecting the oxygenated he-
moglobin (OxyHb), deoxygenated hemoglobin (DeoxyHb), and total
hemoglobin (Total Hb) signal changes. Afterwards, to recover the mean
hemodynamic response we solved the GLM based on ordinary least
squares (Ye et al., 2009), modeling the HRF with a modified gamma
function convolved with its derivative and 3rd order polynomial for
drift correction. Statistics were done outside Homer2 with in-house
written scripts in Matlab. Note that we performed all further analysis on
the OxyHb signal. Most fNIRS studies focus on OxyHb, as this signal
correlates more robustly with the fMRI-BOLD signal in several tasks,
possibly due to a higher signal-to-noise ratio as compared to DeoxyHb
(Hoge et al., 2005; Huppert et al., 2006; Mehagnoul-Schipper et al.,
2002; Okamoto et al., 2004b; Strangman et al., 2002).

3.3. fNIRS statistical analysis

We used a mixed linear modeling (MLM) approach (Baayen et al.,
2008) to analyze the relation between the peak OxyHb and task diffi-
culty. All analyses were performed using the package lme4 (version
1.1–13) in R version 3.3.1.

Two sets of analyses were performed: the first set with the signal
averaged within the DLPFC-ROI as a dependent variable; the second set
with the signal averaged over all channels as a dependent variable. In
all analyses, we followed a model building procedure. In a first step, we
estimated a benchmark model including a random intercept for chan-
nels nested into participants (see Jasinska and Petitto, 2013 for a si-
milar approach) to account for between-subjects variability in OxyHb
concentration changes across channels (variability of no interest), plus
four covariates. The first covariate was the average RT difference (hard
– easy) across subjects, to control for effects of performance on DLPFC
activity. The second covariate was the score of the reward responsivity

Fig. 2. fNIRS setup a. fNIRS montage visualized on the 10–20 EEG template. Selected optodes and channels covering DLPFC. b. Whole montage visualized on a 3D
rendering of MNI space, with optode coordinates projected on the cortex. The yellow circles highlight the channels included in the DLPFC-ROI. c. Whole montage
visualized on the 10–20 EEG template. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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scale from the BIS-BAS questionnaire, to target potential effects of in-
centive motivation. The third and fourth covariates were the average
differences in mood before and after the experiment, measured with the
PANAS positive and PANAS negative affect scales. The goal of this
procedure was to test for additional influences of state and trait in-
dividual differences on DLPFC response to difficulty.

Next, two more complex models were created by expanding the
benchmark model with one of the fixed effects for Difficulty (Easy vs
Difficult), or Hemisphere (Left vs Right). Each expanded model was
compared to the benchmark model using a likelihood ratio test (sig-
nificance level of .05). We introduced the factor Hemisphere to test
whether preparation-related activity in PFC would be uni- or bilateral.

In the second step, a new benchmark model was constructed by
including the random effects of the original benchmark model, plus
each statistically significant fixed effect from the first step, plus the
covariates. This benchmark model was then compared to the same
model plus the two-way interaction effect. The significance of the in-
teraction of each covariate with the main effect of difficulty was also
tested against the benchmark model.

As a control, all analyses were repeated again with the first
benchmark model including only a random intercept for participant
(thus without nesting channels within participants). This control ana-
lysis returned very similar results and therefore will not be reported.

Finally, in order to further explore brain-behavior relationships we
correlated the average differences in behavioral performance (RTs and
accuracy) with average differences in peak OxyHb within the DLPFC
ROI (difficult – easy condition).

4. Results

4.1. Behavioral results

Prior to analysis, RTs were log-transformed. In line with previous
reports, participants responded faster to easy trials than to hard trials
(t(18) =−6.47, p < .001, mean difference − .13). Responses to easy
trials were also more accurate than to hard trials (t(18) = 6.73,
p < 0001, mean difference .14), confirming successful manipulation of
task difficulty.

Fig. 3. DLPFC fNIRS results. a. Cortical hemodynamic response of OxyHb within the DLPFC ROI (shown at the top right) time-locked with cue-onset (during task
preparation) for easy (blue line) and difficult (pink line) trials. Shades around the lines represent± standard error of the mean. b. Cortical hemodynamic response of
OxyHb averaged over all channels (shown at the bottom right), time-locked with cue-onset (during task preparation) for easy (blue) and difficult (pink) trials. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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Next we analyzed the ratings about task difficulty and liking, given
during the training. Participants judged hard trials as more difficult
(t(18) = 2.31, p= .03). Participants who found hard trials more difficult
also liked the easy trials more (r= .51, p= .03), and showed larger RT
differences between hard and easy trials performance (r= .53,
p= .02). Participants who liked easy trials more, also like hard trials
less (r=−.74, p < .001). Participants who liked hard trials more, also
found hard trials less difficult (r=−.45, p= .05). A larger difference
in liking ratings between hard and easy trials was associated with
smaller difference in RT (r=−.50, p < .04). A larger difference in
difficulty ratings between hard and easy trials was associated with a
larger difference in RTs (r=−.46, p= .05). No significant difference
was found in the liking ratings (how much participants reported to like
the easy as compared to the hard trials).

Next, we computed the results of the PANAS questionnaire, which
was administered before and after the task to check participants’ af-
fective state. Both positive (t(18) = 6.43, p < .001) and negative affect
scores (t(18) = 3.29, p= .004) were significantly lower after the task
(possibly due to the long duration of the experiment, which lasted
about an hour including set up time and task performance time).
Subsequently, we performed an exploratory correlation analysis, cor-
relating the difference between hard and easy condition in RTs and
Accuracy with the difference in affective state pre- and post-task (both
for negative and positive PANAS). Difference in PANAS-negative scores
was larger for participants with higher BIS scores (r=−.54, p= .02).
Larger accuracy difference (hard – easy) was associated with larger
difference in PANAS-negative scores (r= .46, p= .05). No other sig-
nificant correlations were observed. Performance also did not correlate
with other questionnaires measures.

4.2. fNIRS main results

Statistical significance of the results was assessed by likelihood ratio
testing. χ2 and p-values refer to comparisons between the benchmark
model and the same model plus the fixed effect or interaction of in-
terest. As the model residuals were right-skewed, a square root trans-
formation was applied to the OxyHb.

The main analysis targeted the effect of task difficulty in the DLPFC-
ROI, controlling for average RT difference. As hypothesized, the results
revealed a main effect of difficulty (χ2(1)= 6.57, p= .01, see Fig. 3a).
Specifically, the average OxyHb peak was higher in the hard condition

than in the easy condition (Fig. 3). No main effect of hemisphere was
observed (Hemisphere: χ2(1)= .07, p= .79). No Difficulty ×Hemi-
sphere interaction was observed (χ2(2)= .15, p= .93). The Diffi-
culty×RT interaction was also not significant (χ2(1)= 1.17, p= .28).
The Difficulty× reward responsivity interaction did not reach sig-
nificance (χ2(1)= .23 p= .63), failing to provide evidence for a
modulation of individual differences in reward sensitivity (at least as
measured by the reward responsivity scale of the BIS-BAS ques-
tionnaire). No significant interaction with positive mood was observed
(Difficulty×PANAS positive χ2(1)= .05, p= .82). A marginally sig-
nificant interaction was observed for negative mood (Difficulty×
PANAS negative (χ2(1)= 4.06, p= .04)). This was driven by a steeper
decrease in negative affect post-experiment in participants showing a
smaller difficulty effect in DLPFC (R2 = .12). However, this was the
only significant relationship between measures of mood and personality
with peak oxyHb, which warrants caution for any interpretation.

Next, we performed the same analysis pipeline on the signal aver-
aged across all channels (whole montage, see Fig. 3b). This analysis
revealed a main effect of Difficulty, (χ2(1)= 20.58, p < .01), and no
effect of Hemisphere (χ2(1)= .88, p= .35). The Difficulty×Hemi-
sphere interaction was not significant (χ2(2)= 2.77, p= .25). The
Difficulty×RT interaction was also not significant (χ2(1)= 2.32,
p= .13). Finally, no significant interaction of Difficulty with reward
responsivity was observed (χ2(1)= .06, p= .81, nor with positive
(Difficulty×PANAS positive χ2(1)= .06, p= .80) or negative mood
(Difficulty×PANAS negative χ2(1)= 2.61, p= .11).

Next, we correlated the difficulty effect on the oxyHb peak within
the DLPFC ROI (hard > easy) with difference scores of accuracy and
RTs. Difference between oxyHb peaks for hard vs. easy trials correlated
with differences in accuracy: a larger oxyHb difficulty effect was as-
sociated with smaller differences in accuracy (r=−.57, p= .01.
Fig. 4).

Larger oxyHb difficulty effect was also associated with larger dif-
ferences in liking ratings (between easy and hard, r= .49, p= .03).
Interestingly, participants who liked hard trials more than easy trials
also showed a larger DLPFC difficulty effect, potentially reflecting in-
creased interest and engagement in the task. To further explore brain-
behavior relationships, we performed the same correlations on the la-
tency of oxyHb response (rather than the peak). Only one significant
correlation was observed, between the difficulty effect (latency of
oxyHb peak in DLPFC in the hard – easy trials) and the reward re-
sponsivity scale of the BIS BAS. Larger difference in latencies was as-
sociated with reduced reward responsivity (r=−.47, p= .04). In
participants with lower reward responsivity, the latency of oxyHb re-
sponse for hard trials was longer.

Finally, for completeness, in Fig. 5 we plot cortical hemodynamic
responses for all channels across the whole montage, showing OxyHb,
DeoxyHb and total Hb in the hard (Fig. 5a) and easy condition (Fig. 5b),
with the light yellow circles delimiting the DLPFC ROI channels. Visual
inspection of the signal in the hard condition reveals larger oxyHb
peaks in the fronto-lateral channels (including the DLPFC-ROI channels,
but also the channels rostral to the ROI), as compared to the fronto-
medial and the lateral channels (partially covering frontopolar and
temporal regions). Interestingly, in the easy condition, large oxyHb
peaks are mainly to be observed in the left hemisphere channels, as
compared to the right hemisphere channels in the same condition,
potentially suggesting that while these frontal regions are involved in
task-preparation in general, anticipation of a difficult task recruits those
cortices bilaterally. These speculative interpretations should be in-
vestigated in further research.

4.3. fNIRS exploratory results

Previous studies suggest that handedness may interact with func-
tional lateralization: for lateralized cognitive functions, left-reversed
laterality occurs more often left-handers (for example, left-handers are

Fig. 4. Correlation between difficulty anticipation in DLPFC and performance
accuracy. The x axis shows average differences in oxyHb peak in the hard – easy
condition per each participant. The y axis shows differences in performance
accuracy (hard – easy). Participants with larger DLPFC difficulty effect showed
a smaller difference in accuracy for hard vs. easy trials.
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20% more likely to demonstrate right hemisphere dominance for lan-
guage compared to right-handers, Carey and Johnstone, 2014, Mazoyer
et al., 2014, Frässle et al., 2016). To test for this possibility, we per-
formed an additional exploratory analysis adding self-reported hand-
edness as a factor to the MLM model, with DLPFC OxyHb as dependent
variable. In this analysis, the main effect of Handedness was marginally
significant (χ2(1)= 4.1, p= .04). No significant Difficulty×

Handedness interaction was observed (χ2(4)= .49, p= .49). The
Handedness×Hemisphere interaction was marginally significant
(χ2(2)= 5.67, p= .06). Interestingly, the 3-way interaction Diffi-
culty×Handedness×Hemisphere was significant (χ2(3)= 12.53,
p < .01), indicating a possible lateralization of the difficulty effect in
DLPFC as a function of handedness. However, one should be careful in
interpreting these results, as the analysis was exploratory, and the

Fig. 5. Hemodynamic responses for all channels separately. a. OxyHb (red), DeoxyHb (blue) and total Hb (green) time-locked with cue onset in the hard trials. b.
OxyHb (red), DeoxyHb (blue) and total Hb (green) time-locked with cue onset in the easy trials. In both panels the whole montage is shown. The yellow circles
highlight the DLPFC-ROI channels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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design was not optimized for this research question, as the sample size
in each handedness group was too small. The hypothesis that antici-
pation of difficulty may be lateralized as a function of handedness
should be investigated in future studies, using continuous scales for a
more sensitive index of handedness in combination with an appro-
priately powered design.

5. Discussion

This study investigated the role of DLPFC during anticipation of a
mentally effortful task. Our results revealed increased DLPFC when
anticipating a difficult task (a harder arithmetic problem), as compared
to an easier one. These results confirm a contribution of DLPFC to an-
ticipation of difficulty, as suggested by a previous fMRI study (Vassena
et al., 2014), and establish optical imaging with fNIRS as a non-invasive
and cost-effective tool to investigate the role of DLPFC this process.

Growing neuroimaging evidence shows that preparing for mentally
demanding tasks is associated with activity in medial PFC, especially
dorsal ACC (e.g., Parvizi et al., 2013; Vassena et al., 2014). Some stu-
dies suggest a crucial contribution of DLPFC to this process as well. For
example, Vassena et al. (2014) and Sohn et al. (Sohn et al., 2007) found
an effect of task preparation prior to performing hard trials in DLPFC.
McGuire & Botvinick (McGuire and Botvinick, 2010) observed that MFC
correlated with errors and RTs, but only DLPFC correlated with
avoidance ratings when performance (errors and RT) were factored out,
suggesting a more general role in strategic preparation. The present
results confirm a role of DLPFC in anticipating difficulty. The me-
chanism underlying such contribution may involve preparation for ef-
fort exertion (i.e. allocation of task-related attentional resources, Brown
and Alexander, 2017; Verguts et al., 2015), or simply the prediction of
the nature of the upcoming task (i.e., is it difficult or not, (Vassena
et al., 2017a)). Another possibility is that DLPFC may predict other
variables related to task difficulty, such as increased error likelihood
(Brown and Braver, 2005) or time-on-task (Grinband et al., 2011).
However, these models predict these effects in the dACC rather than
DLPFC. In our data, we did not find evidence of a relationship between
RT and DLPFC activity, while larger difficulty-related activity in DLPFC
was associated with smaller differences in accuracy, potentially sug-
gesting a role of DLPFC-driven top-down control on performance.

Previous fNIRS studies have also investigated DLPFC contribution to
several cognitive processes, such as word-encoding in a memory task
(Ferreri et al., 2014), inhibitory control in drug users (Roberts and
Montgomery, 2015), dual motor and cognitive task-performance
(Mandrick et al., 2013). Relevant to the current results, two studies
targeted hemodynamic responses in DLPFC in effortful tasks, specifi-
cally testing the effect of varying mental load in a working memory task
(Molteni et al., 2012), and comparing laboratory measures of load
(executive function task) with real-life effort (operating a flight-simu-
lator, Causse et al., 2017). Both studies confirm a PFC contribution to
the process. However, in both cases hemodynamic changes were mea-
sured during task performance, and not during task preparation as in
our case. Interestingly, Causse and colleagues found no effects of per-
formance on DLPFC activity, and conclude that this region may play a
motivational role in sustaining effort exertion, rather than affecting task
performance. Finally, a few studies also investigated the potential of
fNIRS signal decoding in PFC as a Brain-Computer Interface, showing
reliable decoding of brain activity during mental arithmetic as com-
pared to rest (Bauernfeind et al., 2014; Herff et al., 2013).

The results of the current study thus relate to previous fNIRS evi-
dence on DLPFC involvement during effortful tasks, showing for the
first time with fNIRS a clear contribution of DLPFC to anticipation of a
difficult cognitive task. Furthermore, they confirm DLPFC involvement
as hypothesized on the basis of previous fMRI studies measuring BOLD
response to cognitive demand. The BOLD signal is a compound mea-
sure, which depends on cerebral blood flow, cerebral blood volume and
oxygen metabolism, and in particular oxygenated and deoxygenated

hemoglobin ratio. fNIRS measures the changes in oxygen metabolism, a
sub-component of the BOLD signal (Buxton, 2013), which in turn can be
dissected in oxyHb, deoxyHb, or total Hb. Which of these measure
better correlates with BOLD signal seems to be task-dependent
(Scarapicchia et al., 2017), and in particular oxyHb seems to be the best
index in the context of a cognitive task, as indicated by our results as
well. Our results corroborate this link, and suggest oxyHb measured
with fNIRS over DLPFC as reliable measure of difficulty anticipation.

Finally, it is important to highlight a few limitations of this study.
First, the fNIRS montage used to measured cortical hemodynamics in-
cluded only frontal channels. Although a similar approach has been
adopted in several other studies (Bembich et al., 2014; Ernst et al.,
2013; Laguë-Beauvais et al., 2013), other areas must be targeted in
future work. In particular parietal cortex has often been found to be co-
activated with DLPFC, including during preparation for mental effort
(e.g., Boehler et al., 2011). Several studies suggest that DLPFC and
parietal cortex form the fronto-parietal network (Dosenbach et al.,
2008), implicated in attentional and top-down control, goal-directed
behavior and translation of instruction to action (Buschman and Miller,
2007; Farooqui et al., 2012; Hartstra et al., 2012; Muhle-Karbe et al.,
2017). On a related note, future studies with the possibility of larger
montages should include a functionally dissociable control region.
Given our strong a-priori hypothesis, we focused on DLPFC. However, it
would be important for future research to investigate the specificity of
DLPFC involvement during task preparation, by simultaneously testing
regions that should not contribute to the effect, such as the vertex, as
typically done when using other modalities (for example neuro-
stimulation).

A second limitation is that the fNIRS technology only allows re-
cording cortical activity; deeper regions such as dACC or subcortical
structures cannot be targeted. The contribution of these regions to an-
ticipation of difficulty and mental effort preparation has been reliably
observed with fMRI (Kurniawan et al., 2013; Vassena et al., 2014), but
cannot be addressed with fNIRS.

Third, in contrast to our fMRI study (Vassena et al., 2014), in this
fNIRS study we did not manipulate incentive motivation by delivering
rewards of different magnitudes for correct task performance. As a first
attempt to validate fNIRS to measure DLPFC contribution to difficulty
anticipation, we adopted a simple approach, manipulating only task
difficulty, to ensure sufficient data per each design cell. Furthermore, in
our fMRI study we did not observe DLPFC involvement for reward
anticipation. However, other previous studies did observe modulation
of DLPFC activity as a function of reward prospect (Bahlmann et al.,
2015; Kouneiher et al., 2009). Therefore, future research should ad-
vance these results, by manipulating both anticipated difficulty and
reward prospect. On a related note, while the current design provided
sufficient power to detect the main effect of interest (i.e., anticipation of
difficulty), the interaction with handedness and laterality, and the
modulation of reward responsivity (from the BIS BAS questionnaire)
should be further tested in a larger sample (as the failure to observe
significant effects may be attributed to lack of power).

Finally, future designs should disentangle the mechanism under-
lying DLPFC contribution to anticipation of difficulty, referring to
available computational models of PFC function, which attempt to
describe the role of this region to task performance in a mechanistic
fashion (Alexander et al., 2017; Koechlin, 2016). Future theorizing ef-
forts should also consider the relative contribution of DLPFC, as op-
posed to dACC (Vassena et al., 2017b) to develop novel frameworks
able to describe the interaction between the two regions (Domenech
et al., 2017; Kerns et al., 2004).

The conclusion that DLPFC activation is measurable via fNIRS opens
up several avenues for research, given the portability and low price of
fNIRS setups. In particular, it allows measurement while engaged in (or
preparing for) active tasks, which is not possible with standard (e.g.,
EEG, fMRI) measurement protocols. This is especially of potential re-
levance in physical effort tasks, in which movement seems almost by
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definition required, for example in the emergent field of sport psy-
chology.

Another group of studies in which fMRI protocols are problematic,
and hence fNIRS is an interesting alternative, are those where mea-
surement time is necessarily long, either because a single session is long
(e.g., studies on fatigue; Wang et al., 2016) or because several sessions
must be administered (e.g., studies on learning or memory). For ex-
ample, concerning fatigue, (Wang et al., 2016) conducted a Stroop task
for 160min using EEG. They observed an anterior-frontal ERP that
increased during the first 80min of test-taking; during that period,
accuracy remained approximately constant. However, as soon as the
ERP dropped (after 80min on the task), also accuracy dropped. They
thus interpreted the frontal ERP as a “compensation” signal, reflecting
the investment of cognitive effort to maintain task performance at an
acceptable level (around 10% errors). fNIRS could be fruitfully used to
investigate the spatial localization of this component more precisely.
fNIRS also opens up interesting possibilities for studies that require
large groups. Examples include between-subject designs, studies on
individual differences, or studies where effect sizes are expected to be
small. Due to the cost of a single MRI scan, such large-group studies are
typically not possible in fMRI. Thus, fNIRS might provide an opportu-
nity to better control Type-I and Type-II errors in neuroimaging (Button
et al., 2013). Finally, fNIRS also allows testing in subjects with contra-
indications for fMRI (e.g., pregnancy, non-removable ferro-magnetic
implants, or pacemakers, children). Based on our findings, one could
investigate the development of the difficulty effect in children across
the life-span. Finally, one could investigate anticipation of effortful
behavior in populations that show clinically impaired motivation and
effort exertion.
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