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Abstract: Introduction: Reward processing is a key aspect of cognitive control processes, putatively
instantiated by mesolimbic and mesocortical brain circuits. Deficient signaling within these circuits has
been associated with psychopathology. We applied a network discovery approach to assess specific
functional networks associated with reward processing in participants with attention-deficit/
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hyperactivity disorder (ADHD). Methods: To describe task-related processes in terms of integrated
functional networks, we applied independent component analysis (ICA) to task response maps of 60
healthy participants who performed a monetary incentive delay (MID) task. The resulting components
were interpreted on the basis of their similarity with group-level task responses as well as their simi-
larity with brain networks derived from resting state fMRI analyses. ADHD-related effects on network
characteristics including functional connectivity and communication between networks were examined
in an independent sample comprising 150 participants with ADHD and 48 healthy controls. Results:
We identified 23 components to be associated with 4 large-scale functional networks: the default-mode,
visual, executive control, and salience networks. The salience network showed a specific association
with reward processing as well as the highest degree of within-network integration. ADHD was asso-
ciated with decreased functional connectivity between the salience and executive control networks as
well as with peripheral brain regions. Conclusions: Reward processing as measured with the MID task
involves one reward-specific and three general functional networks. Participants with ADHD exhibited
alterations in connectivity of both the salience and executive control networks and associated brain
regions during task performance. Hum Brain Mapp 38:2359–2369, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Reward is essential to human behavior. For example,
reward elicits approach behaviors and learning as we try
to maximize rewards. Moreover, it impacts affective expe-
riences associated with behavior, for example, by inducing
pleasure when receiving a reward [Berridge and Robinson,
2003]. It is clear that such reward processes affect how and
what kind of decisions we make, what kind of preferences
we have, and, as they are directly related to cognitive con-
trol, how many cognitive resources we allocate for perfor-
mance in a given situation [Aarts et al., 2011].

Given their central role in behavior, researchers have
started investigating reward processes in clinical popula-
tions. For instance in attention-deficit/hyperactivity disor-
der (ADHD), several studies have been conducted that
employed reward-related manipulations. Based on reports
of altered performance observed in participants with
ADHD, impairment in reward-related processes was
hypothesized as potential mechanism underlying ADHD
and incorporated in theoretical models of psychopathology
that explain ADHD in terms of neurochemical [Tripp and
Wickens, 2009], brain pathway [Sonuga-Barke, 2002], or
neurocomputational [Frank, 2005] deficits [for review see
Luman et al., 2010]. However, inconsistent replication of
these findings in subsequent studies highlights that
reward-related alterations in ADHD are far from under-
stood and an active topic of debate in the community [e.g.,
Demurie et al., 2016].

On a neural level ADHD is associated with aberrant sig-
naling in structures of the brain that are thought to govern
reward processing. Structures involved in reward process-
ing include mesolimbic and mesocortical brain circuits
consisting of midbrain, ventral striatum, anterior cingulate
cortex (ACC), and orbitofrontal cortex (OFC) [Frank and
Fossella, 2011]. Functional Magnetic Resonance imaging

(fMRI) studies investigating reward-related brain processes
in participants with ADHD mostly apply a monetary
incentive delay (MID) task. These studies most consistently
report attenuated responses of the ventral striatum during
reward anticipation [for review see Plichta and Scheres,
2014]. In addition, other studies reported reward-related
alterations in the orbitofrontal cortex. The direction of
these alterations, however, is less consistent and depends
largely on the used paradigm (increases reported by
Str€ohle [Str€ohle et al., 2008] and Von Rhein [Von Rhein
et al., 2015] using a MID task (during reward receipt);
decreases reported by Rubia using a temporal discounting
[Rubia et al, 2009a] and rewarded continuous performance
task [Rubia et al., 2009b]). Together, these findings provide
support for the role of dysfunctional mesolimbic and mes-
ocortical brain networks in ADHD.

The functional units of the brain are networks of special-
ized, neural structures that communicate with each other
[Mesulam, 1998; Poldrack, 2012]. However, the ability to
investigate network characteristics using conventional
task-based analytical approaches is limited. Such
approaches commonly use univariate models that rely on
calculating averaged responses of the brain to manipula-
tions, either for a region of interest (ROI) or at the whole-
brain level (voxel-wise). Although such approaches are
powerful in localizing cognitive functions based on the
blood oxygen-level dependent (BOLD) response ampli-
tude, they are blind to relational aspects among neural
structures. These aspects are, however, crucial for a com-
prehensive and integrated description of the functional
properties of the neural circuits underlying cognitive func-
tions. Accordingly, a model that takes the brain’s highly
connected neural structure into account is likely to provide
a biologically more valid description of neural processes
compared to a model that assumes functional indepen-
dence [Sporns et al., 2004].
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Here we provide a network discovery approach to
define brain areas implicated in reward processing and to
assess whether reward-related network characteristics dif-
fer between participants with ADHD and controls. Specifi-
cally, we performed an independent component analysis
(ICA) on participant-level reward-related activation maps
to define those regions that co-activate across participants.
ICA is a data-driven approach that separates neural data
into a set of spatially independent components (ICs). By
identifying components that reflect neuroanatomical sys-
tems we were able to describe task responses in terms of
associated larger functional networks. Because these com-
ponents are determined based on the consistency of brain
response patterns, this method is also sensitive to
responses with low amplitude if they are consistent across
participants. Finally, component selection allows focused
investigations on specific components of interest, thus
avoiding interpretation of components that relate to noise
or components that are invariant to task demands. Investi-
gation of network characteristics in the context of ADHD
is of particular interest as studies applying network analy-
ses using resting state-fMRI report ADHD effects on a net-
work level (for review see [Oldehinkel, et al., 2013]).
ADHD has been associated with decreased connectivity
between ventral striatum (VS) and orbitofrontal cortex
(OFC) [Posner et al., 2013]. Moreover, several studies
report aberrant connectivity in the default-mode network
(DMN) in ADHD (for review see [Konrad and Eickhoff,
2010; Posner et al., 2014]). By applying network analysis to
reward-related task responses we were able to specifically
assess the association between ADHD and network charac-
teristics of reward-related functional networks. Based on
the prominent role of mesolimbic and mesocortical brain
circuits in reward processing and reported alterations
within these circuits in participants with ADHD, we
expected to find diagnostic changes on network character-
istics particularly for components that include frontal stria-
tal structures such as OFC and VS.

METHODS

To identify reward-related functional networks based on
spatially coherent response patterns we performed ICA on
task-based response maps derived from 60 healthy control
participants. We refer to these participants as the
“discovery sample.” In addition, we used an independent
“test sample” including 48 normal controls and 150 partic-
ipants with ADHD to investigate ADHD-control differ-
ences in the spatial and temporal characteristics of the
derived functional networks. An overview of the analytical
steps is presented in the Supporting Information (Fig. S1),
and each step is described in detail below.

Participants

Both the participants for the discovery sample as for the
test sample were selected from the NeuroIMAGE study.

Detailed description of the recruitment and selection pro-
cedure for the entire cohort can be found in the supple-
mental material and in Von Rhein et al. [2014]. Here, we
included all participants from ADHD and control families
who underwent a MRI scan session that included adminis-
tration of a monetary incentive delay (MID) task (N 5 370).
Participants with ADHD were required to have a current
ADHD diagnosis according to the DSM-5 definition,
healthy controls were not allowed to display more than 2
ADHD-related symptoms (see [Von Rhein et al., 2014] for
detailed diagnostic procedure). Exclusion criteria were use
of medication (other than ADHD medication) or illicit
drugs (n 5 7), acute psychiatric conditions such as psycho-
sis (n 5 3), and qualitatively insufficient or incomplete data
(n 5 102; see Supporting Information for details). Applying
these selection criteria resulted in the inclusion of 258 par-
ticipants in the current analyses (150 ADHD, 108 healthy
controls). These participants were the same as described in
a univariate task-based case-control comparison presented
elsewhere [Von Rhein et al., 2015]. As the study was con-
ducted in families, participants included siblings (n 5 45).

As indicated above, the 258 participants were divided
into a discovery and test sample. The discovery sample
was entirely composed of control participants to ensure an
unbiased definition of reward-related networks. Sex was
unequally distributed between controls and participants
with ADHD, with more girls in the control group and
more boys in the ADHD group (for sensitivity analyses on
the effects of this imbalance we refer to the Supporting
Information). To ensure that at least 25% of participants in
each sample were male we randomly assigned 25%
(n 5 15) of the control boys to the discovery sample. All
remaining control boys (n 5 33) were assigned to the con-
trol test sample. Subsequently, we added female control
participants to the control test sample until the ADHD
and the healthy control test sample had a comparable per-
centage of male participants (�70%). This was achieved by
adding 15 randomly selected females to the control test
sample. All other control females were added to the discov-
ery sample. Demographics for all samples are displayed in
Table I.

Paradigm

Participants performed a monetary incentive delay
(MID) task, in which they needed to respond to the occur-
rence of a target stimulus by pressing a button. The core
manipulation of this task relates to the target-preceding
cue. The color of this cue informs the participant whether
a button press is potentially rewarded or not. Difficulty of
the task was adapted to the performance of each partici-
pant by adjusting the time window in which participants
were allowed to respond (20 ms shorter after hits and 10
ms longer after misses), separately for rewarded and neu-
tral cues. This resulted in an expected hit rate of 33% for
each trial type. Common measures of the MID task are
reaction times and reaction time variability as well as
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neural responses in reward processing brain structures
including VS and OFC during reward anticipation and
receipt [Fairchild, 2011; Knutson et al., 2001]. A detailed
description of the task is available in the Supporting Infor-
mation and in Von Rhein et al. [2015].

Brain Network Analysis of Task-Related

Responses

Network identification and decomposition

To recover networks implicated in reward processing
we focused on task-based activation maps of the partici-
pants in the discovery sample. First, we identified all brain
regions dedicated to reward processing by performing a
typical task-based fMRI analysis (first-level) on prepro-
cessed fMRI data with onset times of rewarded and neu-
tral cues (regressor 1 and 2), hits (regressor 3 and 4), and
misses (regressor 5 and 6) as regressors of interest (see
Von Rhein et al. [2015] and Supporting Information for
details of data acquisition/preprocessing and first-level
statistics). This analysis resulted in participant-level spatial
maps (zstat) for these six regressors. To investigate the
relationship between these simple activation maps and
higher-order contrasts hypothesized to capture key reward
processes, we included the within-subject contrasts reward
cue versus neutral cue (reward anticipation; spatial map 7)
and rewarded versus neutral accuracy (hit vs. miss;
reward receipt, spatial map 8). All eight maps were trans-
formed to a common space (MNI152) for group analysis
(see Supporting Information for details).

To decompose the reward network into independent
sources, we concatenated unthresholded participant-level
zstat maps into one time series. On these data, we applied
ICA as implemented in FSL MELODIC [Jenkinson et al.,
2012]. To maximize component reliability, we ran 50 ICA
decompositions, each including data from 40 randomly
selected participants from the discovery sample. We
requested extraction of 15 independent components (ICs)
for each ICA decomposition. We chose this number to
allow sufficient differentiation between noise and potential

non-noise components, while avoiding unreasonably scat-
tered functional networks. The spatial maps of all ICs
gained from these multiple ICA decompositions were
thresholded by means of mixture modeling at P< 0.5
[Woolrich et al, 2005] and entered into a meta-ICA decom-
position with a dimensionality of 30 components [Biswal
et al. 2010]. The 30 resulting components were again
thresholded using mixture modeling at P< 0.5 [Woolrich
et al., 2005] to reveal the final spatial maps. DvR and MM
visually inspected the spatial maps in order to check the
validity of the ensuing component solution and to identify
components that clearly represented noise.

Network interpretation

To facilitate interpretation of the obtained meta-ICA
components in terms of their relation with task aspects,
we investigated spatial similarity between each component
and the group-level task response maps. The group-level
task response maps were derived from group-level statisti-
cal analysis on the participant-level zstat maps with age,
gender, and scan site as covariates. Group-level statistical
maps were thresholded using Gaussian Random field
(GRF) theory-based cluster statistics (P< 0.05) after initial
thresholding (Z> 2.3). We obtained group-level maps for
the following eight contrasts: rewarded cue, neutral cue,
rewarded hit, neutral hit, rewarded miss, neutral miss,
reward cue versus neutral cue, and rewarded (hit vs.
miss) versus neutral (hit vs. miss) receipt.

We conducted a spatial regression for each of the
obtained group response maps against all 30 ICs from the
meta-ICA. This provided a unique loading (beta) for each
IC on the task response maps, effectively indexing the spa-
tial similarity of each component with each of the eight
task response maps. Combining the eight beta weights
into one vector per IC yielded for each IC a profile that
resembled similarity between the IC and the response
maps. Noise components were excluded from further anal-
yses (see Supporting Information Fig. S4 for reference).

Since many obtained profiles showed similar patterns,
we reduced the number of profiles using a k-means

TABLE I. Group characteristics

Discovery sample
Test sample

Statistics

Controls Controls ADHD S

N 60 48 150
Comorbid (ODD/CD) 0 0 34/8
Number of males (%) 15 (25) 33 (69) 105 (70)

M (SD) M (SD) M (SD)

Age 17.3 (2.8) 16.9 (3.2) 17.7 (3) F(2,255) 5 1.39
IQ 108 (15) 107 (13) 98 (15) F(2,253) 5 13.5* (Con 5 Con)>ADHD
Inattentive symptoms 0.3 (1.1) 0.8 (1.5) 7.2 (1.8) F(2,255) 5 551* (Con 5 Con)<ADHD
Hyperactive symptoms 0.1 (0.4) 0.6 (1) 6 (2.4) F(2,255) 5 283* (Con 5 Con)<ADHD

*P< 0.05.
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clustering algorithm. This algorithm allocates individual
data points to clusters by means of maximizing between-
cluster differences and minimizing within-cluster differ-
ences. The number of clusters (k) was determined itera-
tively (n 5 1,000) and by comparing the explained variance
of all possible k’s for our data to explained variance
obtained for randomly generated data (see Supporting
Information for details). We performed clustering with k
ranging from two to the amount of non-noise components
(i.e., 2–23). This step yielded a limited number of distinct
profiles represented by cluster-averaged beta weights.

To identify the larger functional networks represented
by the distinct profiles resulting from the clustering proce-
dure, we calculated averaged spatial maps of the corre-
sponding network components and mapped these visually
onto functional networks gained from previous resting-
state functional connectivity analyses [Seeley et al., 2007;
Smith et al., 2009].

Network Characteristics in Healthy Controls and

Participants with ADHD

The second aim of our study was to assess the effects of
ADHD on reward-related brain networks. To this end, we
used the networks identified using the discovery sample
to investigate network-related metrics in an independent
sample (the test sample) of healthy control participants
and adolescents with ADHD.

Network integrity

To investigate integrity of the identified network compo-
nents, we applied a dual regression analysis using all ICs
from the meta-ICA [Filippini et al., 2009]. This analysis
consisted of two stages. In the first stage, we used every
participant’s full task-related time series to derive the time
series for each of the ICs, by entering all ICs as spatial
regressors in a multivariate GLM. In a second step, the
obtained time courses were used as temporal regressors in
a multivariate GLM to calculate spatial maps of each com-
ponent for each individual. For further group compari-
sons, these spatial maps were transformed into MNI152
space using a custom study template (see Supporting
Information).

To investigate diagnostic effects we applied a group-
level GLM to the subject-specific spatial maps with diag-
nosis, age, gender, scan site, comorbidity with ODD/CD,
and head motion summary scores as covariates. Signifi-
cance for the effect of group was assessed using permuta-
tion testing (FSL randomize) with 10,000 permutations.
Clusters were considered significant if they comprised at
least 20 voxels and reached an FDR-corrected P-val-
ue< 0.05 [Smith et al., 2004]. Finally, to assess the relation
between neural measures being sensitive to diagnostic
effects and behavior, we correlated mean z-stat values
extracted from significant clusters of our case-control

comparison with reaction times and reaction time variabil-
ity (for detailed description of these behavioral parameters
see [Von Rhein et al., 2015]).

Communication between network components

Finally, we investigated the synchronicity of brain
responses within and between different networks. For this
analysis, we used the FSLNets toolbox (fsl.fmrib.ox.ac.uk/
fsl/fslwiki/FSLNets). This Matlab-based toolbox uses the
time course of each IC (result of the first step of dual
regression described above) to calculate normalized regres-
sion coefficients for each IC-IC pairing (ridge regression).
To assess the degree of network integration of the larger
brain networks, we created a correlation matrix of all
regression coefficients, arranged by the result of the clus-
tering algorithm. For each cell indicating within- or
between-cluster functional connections we calculated the
proportion of positive coefficients relative to all coeffi-
cients. These observed proportions were subsequently
used to test against the expected population proportion
(50% positive coefficients per cell) by means of z-statistics.
Using a 5% Type I error criterion, absolute z-values great-
er than 1.96 were considered as statistically significant.

To test regression coefficients at the group-level, we
modeled group as between-subject factor and age, gender,
scan site, comorbidity with ODD/CD, and head motion
summary scores as covariates. Statistical inference for the
group contrast (ADHD vs. CON) was done using permu-
tation testing with 10,000 permutations. Coefficients of IC-
IC pairings were considered significant if they exhibited a
P-value< 0.05 (FDR-corrected).

RESULTS

Brain Network Analyses

Network identification and decomposition

The meta-ICA applied to the ICA components resulting
from iterative decomposition on the participant-level task-
related maps yielded 7 components that were considered
noise components based on visual inspection (see Fig. S4
in the Supporting Information), leaving 23 components for
further investigation. Figure 1 illustrates the spatial maps
for each non-noise component.

Network interpretation

To interpret the components resulting from the meta-
ICA, we compared the component spatial maps to the
group-level task activation maps obtained from the MID
task. Group-level activation maps are shown in Supporting
Information Figure S5. We determined the correspondence
between the component spatial map and each of the task
contrast maps using spatial multiple regression. The
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resulting beta-loadings for each component on each of the
task contrasts are depicted in Figure 1.

Applying k-means clustering to all 23 series of beta-
loadings yielded an optimal number of four specific clus-
ters (see Supporting Information for detailed clustering
results). For each cluster, the average beta-series as well as
the aggregated brain map is displayed in Figure 2. The
beta-series of the first three clusters respectively included
eight (cluster 1), seven (cluster 2), and one (cluster 3) com-
ponents and loaded on almost all task aspects. This was
not the case for the fourth beta-series, which loaded specif-
ically on the reward manipulation. The first general cluster
included regions in posterior cingulate gyrus (PCC), bilat-
eral lateral parietal cortex, and ventromedial prefrontal
cortex. Compared with functional networks revealed by
resting-state functional connectivity (RSFC) studies, these
structures primarily resembled the default-mode network
(DMN) [Buckner et al., 2008; Smith et al., 2009]. Yet, few

other regions were also associated with this cluster,
including cortical structures such as bilateral temporal cor-
tex and motor cortex, and subcortical regions including
putamen, hippocampus, and amygdala.

The second cluster was associated with dorso- and ven-
trolateral PFC and lateral parietal cortex. These regions fit
best with the executive control network (ECN) [Seeley
et al., 2007]. Other regions showing significant association
with this cluster were ventromedial PFC, inferior temporal
gyrus, and cerebellum.

The third cluster was formed by one single compo-
nent. It strongly loaded on all task-event response maps
and was strongly associated with the lateral visual cor-
tex. Including bilateral thalamus, this cluster fits best
with a lateral visual network [Seeley et al., 2007]. Other
regions associated with this cluster were bilateral puta-
men, inferior and superior frontal gyrus, and ventrome-
dial PFC.

Figure 1.

Profiles and spatial maps of all non-noise ICs gained from meta-

ICA. Profiles indicate relation between task response maps and

ICs expressed as beta estimates (y-axis) of the multiple linear

regression with task response map (x-axis) as dependent mea-

sure and ICs from the meta-ICA as independent measure. Task

response maps are (from left to right): rewarded cue, neutral

cue, rewarded hits, rewarded misses, neutral hits, neutral

misses, reward anticipation, and reward receipt. [Color figure

can be viewed at wileyonlinelibrary.com]
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Finally, a fourth cluster was formed by seven compo-
nents and demonstrated reward-specific loadings. This
cluster had strong loading on response maps for rewarded
cues and the reward anticipation contrast and moderate
loading on all receipt events. Associated regions com-
prised anterior cingulate cortex (ACC), supplementary
motor cortex, bilateral fronto-insular cortex, nucleus
accumbens, putamen, brain stem, and thalamus. Com-
pared with functional networks at rest, this cluster showed
high spatial similarity with the salience network [Seeley
et al., 2007]. Additional involved regions were motor cor-
tex, visual cortex, dorso-lateral PFC, and cerebellum.

ADHD-Related Effects on Network

Characteristics

Network integrity

Group maps of the functional connectivity analysis in
the test sample are displayed in Supporting Information
Figure S6. These maps replicated network components
identified with the meta-ICA in the discovery sample (Fig-
ure 2). Compared with the ICs from the meta-ICA three of
these networks exhibited extensions into adjacent regions.

For the executive control network, adjacent regions includ-
ed bilateral caudate nucleus and medial visual cortex. The
visual network included precentral gyrus, dorsomedial
PFC, and cerebellum; the salience network further includ-
ed posterior cingulate gyrus, and caudate nucleus.

Case-control differences were found for four networks.
As indicated in Table II, two of these components were
associated with the salience clustered network and two
with the executive control clustered network. We observed
significantly stronger connectivity for control participants
relative to participants with ADHD for both components
constituting the executive control network: one component
had stronger functional connections with the inferior fron-
tal gyrus (IFG), and the other with the cerebellum. The
salience network had one component with stronger con-
nectivity for participants with ADHD relative to controls,
the other component showed an effect in the opposite
direction. The region with stronger connectivity for partici-
pants with ADHD was located in the cerebellum, the
region with stronger connectivity for control participants
in the inferior temporal gyrus. An overview of all signifi-
cant clusters is given in Table II and in Supporting Infor-
mation Figure S7. Correlations with behavioral measures
were not significant (all P> 0.05).

Figure 2.

K-means clustered profiles and spatial maps of non-noise components. Black lines in profile plots

indicate mean for each cluster. Spatial maps of independent components are averaged across

cluster and thresholded (z> 2.3). Major networks that correspond with the different clusters

are: (1) Default-Mode, (2) Executive control, (3) Lateral Visual, and (4) Salience networks. [Color

figure can be viewed at wileyonlinelibrary.com]
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Network communication

A matrix showing the regression coefficients of all IC-IC
pairings is displayed in Figure 3. The regression coeffi-
cients illustrate connectivity between the ICs included in
each cluster, illustrating both within- as well as between-
cluster communication. The salience network exhibited
significant within-cluster integration between its compos-
ing ICs, as the majority of within-cluster functional con-
nections was positive (76%, P< 0.05). In contrast, the
salience cluster and ICs from the DMN cluster and execu-
tive control cluster exhibited greater amount of negative
functional connections (EC-S: 28%, DMN-S: 36%). Statisti-
cal tests of the proportion positive versus negative func-
tional connections are summarized in Table III. Statistical

comparison of the IC-IC matrices obtained for both groups
did not reveal significant diagnosis-related differences.

DISCUSSION

In this study we set out to identify functional networks on
the basis of reward-related task responses to describe reward
processing in terms of a limited set of brain networks. We
recovered four major brain networks. Three of them resem-
bled general, reward-independent task-responses, while one
was specifically reward processing oriented. Comparison of
these networks with existing resting-state functional connec-
tivity studies revealed that the obtained networks reflected
the executive control, default-mode, lateral visual network,
and salience networks.

The network that was preferentially associated with
rewarded task responses exhibited high spatial correspon-
dence with the well-known salience network [Seeley et al.,
2007]. The main functions of the salience network are to
integrate information from different modalities such as
sensory information and bodily states in order to establish
goal-directed behavior, and to process emotion- and
reward-related information such as reward predictions
[Seeley et al., 2007]. The association of this network with
rewarded cues might therefore reflect brain processes sig-
naling the salience of the cue, but also the need to perform

TABLE II. Significant clusters from whole-brain connectivity analysis

Comparison ICa Sizeb Z-score Xc Yc Zc Region Clustered network

CON vs. ADHD 0 27 3.82 62 248 212 Inferior temporal gyrus Salience
25 88 3.61 56 16 4 Inferior frontal gyrus Executive control
28 31 4.13 218 262 252 Cerebellum Executive control

ADHD vs. CON 5 20 4.41 6 250 216 Cerebellum Salience

aIndependent component.
bIn voxel.
cCoordinates in MNI.

Figure 3.

Matrix of the discovery sample regression coefficients of all IC-

IC pairings. Letters at x- and y-axis indicate cluster to which IC

belongs (DMN: default-mode network, EC: executive control

network; V: lateral visual network; S: Salience network). Digits

in matrix indicate percentage of positive functional connections

within or between clusters. [Color figure can be viewed at

wileyonlinelibrary.com]

TABLE III. Statistical tests of proportion (positive vs.

negative) within- and between-network correlations

Connection Proportion z-score P< 0.05

DMN-DMN 50 0
DMN-EC 42 21.13
DMN-V 12 22.12 *
DMN-S 36 22.06 *
EC-EC 58 0.69
EC-V 71 1.13
EC-S 28 22.95 *
V-V n.a.a

V-S 43 20.38
S-S 76 2.4 *

Networks are default-mode network (DMN), executive control
(EC), visual (V) and salience (S) network
aNot applicable.
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well, elaborating optimal response strategies, or increasing
the readiness to respond.

The other three networks derived from our analyses
were not specifically related to reward processing but
seemed associated with overall task-performance indepen-
dent of reward manipulations. These networks were the
DMN, the executive control network, and a lateral visual
network. The executive control network exhibited a posi-
tive association with all task responses. For cue events,
involvement of the executive control network might be
related to attentional control processes necessary for an
adequate behavioral response such as inhibition of a but-
ton press before the target occurs. Further, activation of
this network during receipt events suggests that operabili-
ty of this system is maintained during the whole trial.

The positive association between the executive control
network and all task responses was paralleled by a nega-
tive association between the DMN and all task responses.
The DMN is thought to function in the organization of the
brain and undirected thoughts; it has also been found to
be dynamically linked with the executive control network
[Fox et al., 2005; Kelly et al., 2008] suggesting that the brain
deactivates the DMN to allocate attentional resources.

Finally, the lateral visual network was represented
across task manipulations. This could be explained by the
modality of our task, which necessitates processing color
information, detecting changes (occurrence of target), and
reading feedback information during reward receipt.

Further investigating the connectivity between compo-
nents constituting the four networks provided additional
information about within- and between-network character-
istics. The salience network exhibited the most consistent
within-network integration, observed as positive connec-
tivity among all components constituting this network.
When investigating between-network communication, we
observed three consistent negative relations, namely
between the salience and the DMN, the salience and the
EC network, and between the DMN and the visual net-
work. This result suggests that the salience network is
highly segregated from other non-visual networks. The
visual network, on the other hand strongly segregated
from the DMN.

Further research could include adequate modeling of
these relationships within for instance a Dynamic Causal
Modeling context [Friston et al., 2003]. The individual
components as recovered through our approach would
provide excellent regions of interest to define such causal
models.

Although analyses were done on a single dataset inves-
tigating reward anticipation and receipt, the approach is
easily extendable to other datasets. One interesting next
step would be to acquire imaging data from different
reward-related functional tasks and recover reward-related
networks from those. Data sharing initiatives exist that might
provide repositories for such efforts (e.g., Neurovault.org;
OpenfMRI.org) and comparable attempts have proven

fruitful. For instance, Smith et al. matched with the same
data-driven approach network components from task
response maps of a large database (>7,000 maps) with func-
tional networks obtained from a resting-state network analy-
sis [Smith et al., 2009], thereby demonstrating a close link
between functional networks underlying diverse cognitive
functions and the functional architecture of the brain. Our
approach is similar in the sense that we also used task-based
activation maps as our starting point. However, our input
maps were unthresholded z-statistic maps related to a spe-
cific cognitive paradigm, compared with Gaussian spheres
modeled at peak locations recovered from a database of
studies as in Smith et al. As such, we believe that our
approach allowed a more comprehensive and specific assess-
ment of reward-related networks.

We used a network discovery approach to investigate
the effects of ADHD on larger brain networks. We
observed that participants with ADHD relative to healthy
controls exhibited altered functional connectivity of the
executive control and the salience network. In both net-
works, functional connectivity was decreased, namely in
the interior frontal gyrus (IFG) and cerebellum (both exec-
utive control) and inferior temporal gyrus (salience). The
salience network had also increased functional connectivi-
ty in the cerebellum. In contrast, we observed no group-
related differences in the between- and within-network
integrity measures.

Altered functional connectivity of the executive control
and salience network in ADHD may provide new bio-
markers for ADHD. We note that the location as well as
spatial extent of our results is in contrast to earlier resting-
state fMRI studies evidencing large changes in core struc-
tures of reward processing brain networks in ADHD
[Costa Dias et al., 2013; Posner et al., 2013]. However, our
current results are in line with the ADHD-related effects
observed in a typical task-based analysis on the same data
[Von Rhein et al., 2015]. Using the same sample as used
here, this study reported moderately increased reward-
related activity in VS and OFC, core reward processing
structures. It should be noted, however, that reward proc-
essing is a heterogeneous concept including different pro-
cesses (see [Berridge and Kringelbach, 2008]), which are
associated with signaling in different neural structures.
Accordingly, we might have pooled distinct functional net-
works into one (i.e., salience) network. The use of such a
unified network might not be specific enough to capture
subtle differences between participants with ADHD and
healthy controls in specific aspects of reward processing.
When integrating across both our studies, our results sug-
gest that ADHD might be related to altered usage of an
otherwise intact reward-processing network. These results
are further confirmed in a second study in the current
sample [Oldehinkel et al., 2016], where we observed no
ADHD-related effects in resting-state functional connectiv-
ity between the functional building blocks of the salience
network. In contrast, inattention modulated resting-state
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functional connectivity within the default mode and
fronto-parietal networks underlying more general task
processing. As such, our results support the idea that
reward-related deficits as behaviorally evident in ADHD
are not supported by underlying reward-specific neurobio-
logical deficits. Rather they might result from more gener-
ally altered brain function [e.g., Sergeant, 2000], or from
another specific deficit such as inhibition as already pro-
posed by Barkley in 1997 [Barkley, 1997].

With respect to the technicalities of our implementation,
an important point to discuss is the heterogeneity of the
network components that we recovered from the meta-
ICA analysis. To simplify our reported network decompo-
sition, we summarized the large number of components
by clustering them together. We interpreted these clusters
of components as unified networks assuming shared/com-
mon functionality of components within each cluster.
However, in light of the assumed functional unity of com-
ponents, it remains that components differ in their spatial
extent as well as their time courses. For instance, some
components within a network cluster were negatively cor-
related, which we currently interpret as a lack of integra-
tion of those components within the network. An
alternative explanation would be that the clustered net-
works include structures that do actually not belong to the
functional network.

A second discussion point relates to the inclusion of the
higher-order contrasts (rewarded cue vs. neutral cue and
rewarded versus neutral accuracy [hit vs. miss]) in the
component identification procedure. Components consti-
tuting the three general networks did not show high load-
ings for these higher-order contrasts questioning their
additional value. For the salience network, however, the
loading of the reward anticipation contrast mirrored the
positive loading observed for rewarded cues. The inclu-
sion of higher-order contrasts thus enabled us to investi-
gate which task aspect was captured by a contrast, thereby
facilitating its interpretation. For instance for the contrast
rewarded versus neutral cue, finding high spatial similari-
ty with rewarded cues supports the interpretation that this
contrasts captures reward processes.

A third point of discussion relates to our functional
interpretation of the brain networks. We estimated the
relation between brain networks and different task aspects
by calculating the unique association of the brain response
to each task aspect and each brain network. These coeffi-
cients were used to form profiles per brain network, which
were subsequently used to interpret the functional aspect
of brain network. This interpretation was done qualitative-
ly as assessing the differential pattern of the profiles’ coef-
ficients (opposed to one-by-one) provides reasonable
explanation of possible functional implications. According-
ly, these interpretations were not based on statistical dif-
ferences between the obtained profiles.

To conclude, we discovered brain networks on the basis
of reward-related task responses. Using a data-driven

approach, we were able to recover four major brain net-
works involved in reward processing: the salience net-
work, the executive control network, the lateral visual
network, and the default mode network. This finding pro-
vides a comprehensive picture of involved brain networks
and their specific task-related role. Only the salience net-
work was selectively associated with rewarded task
aspects, whereas the other three networks seemed to be
related to more general cognitive processes not specifically
related to processing of reward. Between-component con-
nectivity analysis revealed a high degree of network integ-
rity in the salience network, which was less evident in the
other networks. Comparison of healthy participants and
participants with ADHD revealed altered functional con-
nectivity within the salience and executive control net-
works, while functional connectivity within the lateral
visual network and the DMN did not differ between the
two groups.
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