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A B S T R A C T

Most studies that have investigated the brain mechanisms underlying learning have focused on the ability to learn simple stimulus-response associations. However, in
everyday life, outcomes are often obtained through complex behavioral patterns involving a series of actions. Parallel learning systems might be important to reduce
the complexity of the learning problem in such scenarios, as proposed in the framework of hierarchical reinforcement learning (HRL). The key feature of HRL is the
decomposition of complex sets of action into subgoals. These subgoals are associated with the computation of pseudo-reward prediction errors (PRPEs), which allow
the reinforcement of actions that led to a subgoal before the final goal itself is achieved. Here we wanted to test the hypothesis that, despite not carrying any rewarding
value per se, pseudo-rewards might generate a bias in choice behavior in the absence of any advantage. Second, we also hypothesized that this bias might be related to
the strength of PRPE striatal representations. In order to test these ideas, we developed a novel decision-making paradigm to assess reward prediction errors (RPEs)
and PRPEs in two studies (fMRI study: n¼ 20; behavioral study: n¼ 19). Our results show that the participants developed a preference for the most pseudo-rewarding
option throughout the task, even though it did not lead to more monetary rewards. fMRI analyses revealed that this preference was predicted by individual differences
in the relative striatal sensitivity to PRPEs vs RPEs. Together, our results indicate that pseudo-rewards generate learning signals in the striatum and subsequently bias
choice behavior despite their lack of association with actual reward.
1. Introduction

Reinforcement Learning (RL) theories have provided invaluable in-
sights into reward-guided learning and decision-making. A core feature
of most RL theories is that actions are reinforced according to reward
prediction errors (RPEs), that is, according to whether obtained out-
comes are better or worse than expected (Sutton and Barto, 1998). It is
now widely accepted that dopaminergic neurons projecting to the stria-
tum play a pivotal role in the computation of RPEs (Schultz et al., 1997).

Although the computational principles of standard RL theories have
accounted for a wide range of experimental findings in simple learning
paradigms (Niv and Schoenbaum, 2008; Lee et al., 2012; Mas-Herrero
and Marco-Pallar�es, 2016), they provide limited efficacy in complex
environments and situations involving a series of actions (Botvinick et al.,
2009; Botvinick, 2012; Vil�a-Ball�o et al., 2017). For instance, when
attending a conference in a new town, a series of actions is required to get
from the hotel to the conference venue. If you get lost on the way, you
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will need to evaluate which of these actions need(s) to be adjusted next
time. As the number of required actions increases, this operation be-
comes increasingly difficult for standard RL algorithms. One of the
computational approaches that has emerged to solve this credit assignment
problem is hierarchical reinforcement learning (HRL) (Botvinick et al.,
2009; Botvinick, 2012; Hengst, 2012).

In HRL, sequences of actions (e.g. exit hotel, turn right, go straight
and turn left) are packaged together into subroutines evaluated accord-
ing to their own subgoals (e.g. reach bus stop). Attaining a subgoal yields
a so-called pseudo-reward, and any deviation from subgoal expectations
generates a pseudo-reward prediction error (PRPE). Thus, in HRL there
are two value functions – tracking rewards and pseudo-rewards – that are
learnt in parallel. HRL reduces the complexity of the learning problem by
(1) focusing on a small set of decisions (the number of subroutines) rather
than a large sequence of primitive actions and (2) confining behavioral
adjustment to the actions within one subroutine when subgoal expecta-
tions are not met (Fig. 1). Notably, PRPEs reinforce actions leading to the
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Fig. 1. Main differences between classical Reinforcement Learning, as imple-
mented in flat Reinforcement Learning (FRL) models, and Hierarchical Rein-
forcement Learning (HRL). Flat RL models aim to predict all events occurring in
between an initial primitive action (a) and the final reward (blue star). All these
events generate RPEs which are back-propagated in time. In order to accelerate
learning, HRL algorithms divide primitive actions into subroutines of extended
actions (ea) leading to subgoals/pseudo-rewards (orange star). RPEs are
computed following the attainment of each subgoal/pseudo-reward. In doing
this, RPE signals are back-propagated more rapidly (in the above example, 6
jumps are needed in FRL to reach the initial action from the final outcome, while
only 4 jumps are required in HRL). Importantly, HRL includes a second value
function tracking the attainment of subgoals/pseudo-rewards. This value func-
tion uses PRPEs to reinforce those actions leading to a certain subgoal. The goal
of the present study is to examine the parallel neural computation of RPEs and
PRPEs and how they influence choice behavior (adapted from Botvinick
et al., 2009).
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subgoal even before the final reward is obtained, therefore speeding up
learning. Note however that the benefits of HRL over flat RL mainly occur
when subgoals are pre-learned and are indeed appropriate for the
accomplishment of the goal (Botvinick et al., 2009; Van Dijk et al., 2011).
Importantly, while the concept of HRL resonates with the ubiquity of
hierarchy in human behavior, its cognitive and neural nature is yet to be
determined. The first fMRI studies that tackled this question showed that
both RPEs and PRPEs are computed in the ventral striatum (Rib-
as-Fernandes et al., 2011; Diuk et al., 2013; although note that a recent
study by Ribas-Fernandes et al., 2019, could not replicate their earlier
finding).

However, the reinforcing properties of pseudo-rewards may also
potentially lead to a preference for non-beneficial pseudo-rewarding
options. Going back to the previous example, you might prefer to take a
bus in front of your hotel followed by a 10min walk to the conference
venue, rather than a bus that would first require a 10min walk but would
then drop you off evenmore rapidly at the conference venue. This may be
because in the first option, the first subgoal (taking the bus) is attained
more rapidly and thus associated with more pseudo-reward.

Here, we aimed to study whether individuals may develop such biases
towards pseudo-rewards and whether these depend on striatal sensitivity
to RPEs and PRPEs. We developed a novel fMRI task in which partici-
pants had to collect as much money as possible from locked boxes. In
order to collect the money, participants first had to unlock these boxes
(subgoal). Once unlocked (pseudo-reward), each box could contain
money (reward) or not. Crucially, participants had to choose between
two keys to unlock the boxes. These two keys eventually led to similar
amounts of money but, by design, one of them unlocked more boxes than
the other. We hypothesized that participants would be biased towards
the former, associated with more pseudo-reward, even though this de-
cision was not related to higher monetary gains. In addition, if the
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striatum computes both RPEs and PRPEs, we hypothesized that the
relative striatal sensitivity to RPEs vs PRPEs would predict participants’
bias.

2. Materials and methods

2.1. Participants

Twenty-three students from the University of Barcelona (M¼ 21.9
years, SD¼ 2.7, 10 males) participated in the fMRI experiment. Three
participants had to be excluded due to excessive head motion (see fMRI
data analysis section). All participants were paid 20€ per hour and a
monetary bonus depending on their performance. All participants gave
written informed consent, and all procedures were approved by the
University of Barcelona ethics committee.

2.2. Experimental procedure

We developed a novel learning task inducing both reward and
pseudo-reward prediction errors (Fig. 2). Participants were encouraged
to accumulate as much money as possible. The money was placed into
two boxes which were locked. Each box could only be unlocked with its
own key. Thus, in each trial, the participants had to choose between two
keys, in order to unlock the padlock and find out whether there was
money in the box. Unlocking the box can be defined as a pseudo-reward
as it is a non-rewarding state that participants must go through to reach
the reward. Crucially, one box could be unlocked 70% of the time but
only contained money 30% of the time, while the other box could only be
unlocked 30% of the time but contained money 70% of the time. Thus,
the two boxes were associated with the same final reward probability
(70%� 30%¼ 21%), but one of them was associated with a higher
pseudo-reward rate (70% vs 30%). With this design we aimed to study
whether pseudo-rewards may bias participants’ decision-making towards
a preference for the most pseudo-rewarding option, despite the fact that
this option did not confer any advantage in terms of monetary reward
(Fig. 2).

Participants had to select, in less than 2 s, one of the two keys by
pressing either the left (index finger) or right button (middle finger) of a
response pad. If participants did not respond in time, a question mark
appeared in the center of the screen for 1000 ms (these trials were dis-
carded from the analyses). After a delay (1200 ms), a ‘pseudo-feedback’
indicated whether the padlock was unlocked or not (1000 ms). Then,
500 ms after the pseudo-feedback offset, the padlock was presented
either on the left or the right side of the screen. Participants were told
that by correctly indicating its position (left or right button) they would
be ‘removing the key’ from the padlock. Participants were asked to
perform this action as fast as possible (within a time limit of 1000 ms),
regardless of whether it had been unlocked or not. This was included to
ensure that participants were paying attention troughout the trial. If they
did not respond within the time limit, the final outcome was always
negative. If they were successful, a ‘reward feedback’was presented after
a delay of 1200 ms, indicating whether the box contained money or not
(green tick ¼ 0.25€, red cross ¼ 0€, 1000 ms). In trials in which the key
was not properly removed or the padlock remained unlocked, a red cross
indicating that the participant did not accumulate money was also pre-
sented in order to maintain the same structure in all trials (this ‘non-
informative’ feedback was not further analyzed). After reward feedback a
fixation cross remained on the screen until the end of the trial (mean trial
duration was set to 11 s) followed by variable inter-trial interval
(randomly jittered between 100 and 2500 ms, with 300 ms increments).
Thus, participants were rewarded only if the following requirements
were met: the box was unlocked, the key was properly removed in time
and the box contained money. In other cases, the reward feedback was
always a non-rewarding outcome. As mentioned previously, one of the
keys (the most pseudo-rewarding key, referred to as Keyþ) had a greater
probability of unlocking its associated boxes (p ¼ .7) but those boxes had



Fig. 2. Task design. In the first-stage participants
have to choose between two different keys which,
unbeknownst to the them, lead to equal amounts of
reward. Each key unlocks a different type of box. In
the second-stage a locked or unlocked padlock is
presented depending on whether participants suc-
cessfully unlocked the box or not. After using the
key, and before the outcome is presented, partici-
pants have to remove the key from the padlock by
indicating the position of the lock (third stage).
Finally, either a green tick (reward) or a red cross
(no-reward) is presented. The key on the left unlocks
its associated boxes 70% of the time but these boxes
contain money only 30% of the time. In contrast, the
key on the right unlocks its associated boxes only
30% of the time but these boxes contain money 70%
of the time. Overall, both keys are thus equally
rewarded (21% of trials). RF ¼ Reward Feedback; PF
¼ Pseudo-Reward feedback.
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a low probability of containingmoney (p¼ .3). The other key (referred to
as Key-) presented the opposite pattern: it unlocked a smaller fraction of
boxes (p ¼ .3) but these boxes were more likely to contain money
(p ¼ .7). As a consequence both keys were rewarded with the same
overall probability (p ¼ .21). Reward and pseudo-reward outcomes were
probabilistically determined on each trial. Participants were told that a
monetary bonus proportional to the amount of money accumulated
during the task would be paid out at the end of experiment.

The task consisted of three blocks of 69 trials. Each block comprised
of 46 forced-choice trials and 23 free-choice trials that were intermixed.
Forced-choice trials were similar to the free-choice trials explained above
with the difference that only one key appeared in the screen, either in the
left or right side (random order). Participants had to press the corre-
sponding button to select it. In half of the forced-choice trials, partici-
pants were forced to select the most pseudo-rewarding key. In the other
half, they had to select the least pseudo-rewarding key. These forced-
choice trials were introduced to ensure that participants would sample
both options equally. In the remaining free-choice trials, participants
could freely choose between the two different keys.
2.3. Behavioral analysis

In order to study the impact of pseudo-rewards on participants'
choices we used two behavioral measures. First, we quantified the pref-
erence for the Keyþ, by computing the proportion of free-choices in
which participants selected the Key þ over the Key-. To illustrate the
effect of learning, we divided free-choice trials into 11 bins of 6 trials
each, and plotted the preference for the Key þ across bins. A repeated-
measures ANOVA with time (i.e. bins) as a within-participant factor
was performed to assess whether individuals’ preferences remained
stable through the task or changed with learning. In addition, we also
performed a binomial test for each individual to test whether the pro-
portion of Key þ choices was significantly different from chance level
(p ¼ .5) at the individual level.

Second, we performed a modified logistic regression to predict par-
ticipants' choices based on both the amount of reward and pseudo-reward
obtained in previous trials (following a similar procedure as in Diuk et al.,
2013). Specifically, we regressed participants’ free choices (KEYþ/KEY-)
onto the linear combination of rewards and pseudo-rewards obtained in
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the last four trials in which KEYþ/KEY- choices were made (including
both free and forced-choice trials). For each trial, we first computed the
value of each key as follows:

Vt ¼ βrewards
X4

j¼1

Rj þ βpseudo
X4

j¼1

Prj: (1)

Where Rj was þ1 or 0 depending on whether the participant received
money or not on the jth-to-last time (s)he selected that key, and Prj was
þ1 or 0 depending on whether the participant was pseudo-rewarded
(unlocked the box) or not the jth-to-last time (s)he selected that key.
Participants' free-choices were then logistically regressed on these values
using a softmax equation:

pðKeyþÞ ¼ evðKeyþÞ

evðKeyþÞ þ evðKey�Þ : (2)

We optimized the two β parameters by minimizing the negative log
likelihood using the fminunc function in MATLAB. Then, we tested
whether the estimated parameters were significantly different from 0 at
the group level using one-sample t-tests. The two β parameters represent
the respective weights of past rewards and pseudo-rewards in partici-
pant's choices. If participants are guiding their behavior based on the
availability of both rewards and pseudo-rewards wewould expect both βs
to be positive and significantly different from 0.

2.4. Reinforcement learning model

In order to estimate RPEs and PRPEs for the fMRI analysis, we
implemented a temporal difference learning (TD) model in which two
actions values are computed in parallel based on the history of rewards
(Vr) and pseudo-rewards (Vpr), respectively (Diuk et al., 2013). Vr is
calculated according to reward prediction error. In particular, two RPEs
are computed in the current task: when the pseudo-feedback is presented
(RPE1) and when the final outcome is reached (RPE2). In contrast, Vpr is
calculated according to PRPEs. PRPEs only arise when the
pseudo-feedback is presented and indicates whether the subgoal has been
accomplished or not. Thus, at the time of the pseudo-feedback two
distinct prediction errors are computed, the RPE1 and the PRPE, related
to the attainment of rewards and pseudo-rewards, respectively.
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RPE. The action value Vr of each key (in the example below, the
Keyþ) was updated when the pseudo-feedback was presented:

VrðKEYþÞtþ1 ¼ VrðKEYþÞt þ αRPE1: (3)

Where α is the learning rate, the subscript t represent number of trial, and
RPE1 is the RPE term generated following the first action:

RPE1 ¼ VrðstateiÞt � VrðKEYþÞt: (4)

That is, RPE1 is generated by comparing the value of the state pre-
sented just after the selection of a key (VrðstateiÞt) and the action value of
that key (VrðKEYþÞt) (note that for simplicity we omitted the reward
term r which is equal to 0 for RPE1). In the current task four different
states may be presented after the key selection: KEY þ box unlocked,
KEYþ box locked, KEY- box unlocked, KEY- box locked (represented by j
superscript). These states acquire value after the final feedback is pre-
sented trough a classic TD rule:

VrðstateiÞtþ1 ¼ VrðstateiÞt þ αRPE2 (5)

Where RPE2 is the prediction error term computed after the second ac-
tion:

RPE2 ¼ r � VrðstateiÞt: (6)

Where r wasþ1 or 0 depending whether the box containedmoney or not.
PRPE. PRPE were computed after each pseudo-feedback as:

PRPE ¼ Pr � VprðKEYþÞt: (7)

Where Pr wasþ1 or 0 depending on whether the box was unlocked or not
on that trial, and VprðKEYþÞt�1 is the expectancy of obtaining a pseudo-
reward from the Keyþ. Vpr represents action values according to the
attainment of pseudo-rewards only. These action values are learned
following the same rule than Vr:

VprðKEYþ Þtþ1 ¼ VprðKEYþ Þt þ αPRPE (8)

The learning rate (αÞwas set to 0.5 (Seymour et al., 2004; Wilson and
Niv, 2015).

2.5. fMRI data acquisition

fMRI data was collected using a 3T whole-body MRI scanner (General
ElectricMR750 GEM E). Conventional high-resolution structural images
(MP RAGE sequence, repetition time (TR) ¼ 4.7 ms, echo time
(TE) ¼ 4.8 ms, inversion time 450 ms, flip angle 12�, 1 mm isotropic
voxels) were followed by functional images sensitive to blood oxygena-
tion level-dependent (BOLD) contrast (echo planar T2*weighted gradient
echo sequence, TR ¼ 2500 ms, TE ¼ 29 ms, flip angle 90�). Three
functional runs were acquired, each consisting of 316 whole-brain vol-
umes (40 slices, 3.1 mm in-plane resolution, 3.1 mm thickness, no gap,
positioned to cover all but the most superior region of the brain and the
cerebellum). In order to reduce susceptibility artifacts in the orbitofrontal
cortex and the anterior parts of the ventral striatum, slices were orien-
tated with an angle of 30� with the plane intersecting the anterior and the
posterior commissures (Weiskopf et al., 2006).

2.6. fMRI data analysis

Pre-processing was carried out using Statistical Parametric Mapping
software (SPM8, Wellcome Department of Imaging Neuroscience, Uni-
versity College, London, UK, www.fil.ion.ucl.ac.uk/spm/). Functional
images were first sinc interpolated in time to correct for slice timing
differences and were spatially realigned. Realigned images were then
spatially smoothed with a 4mm FWHM kernel before they were motion-
adjusted using the ArtRepair toolbox (Mazaika et al., 2007). Specifically,
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functional images with significant motion artifacts were identified based
on scan-to-scan motion (head position change exceeding 0.5 mm or
global mean BOLD signal change exceeding 1.3%) and replaced by linear
interpolation between the closest non-outlier volumes. Three partici-
pants were removed from the analysis as they presented more than 20%
of volumes with artifacts in one or more runs due to excessive motion
(see Mazaika et al., 2007) and, thus, the final sample consisted of 20
participants. In the remaining participants, 0.72% (SD¼ 1.11) of vol-
umes were corrected for excessive motion on average. Then, the
bias-corrected structural image was coregistered to the mean functional
image and segmented by means of the Unified Segmentation imple-
mented in SPM8. The resulting normalization parameters were applied to
all functional images. Finally, functional images were spatially smoothed
with a 7mm FWHM kernel (the two-step smoothing of 4mm and 7mm is
roughly equivalent to an overall smoothing of 8mm, see Mazaika et al.,
2007).

For the statistical analysis an event-related design matrix was speci-
fied. Seven regressors were included for each trial: key presentation,
response, pseudo-feedback, presentation of the padlock to the left or the
right, response and informative or non-informative feedback. Each
response regressor was associated with a parametric regressor indicating
whether the response was given with the middle or index finger. The
pseudo-feedback regressor was associated with two parametric re-
gressors modelling RPE1 and the PRPE computed at the time of the
pseudo-feedback. The feedback regressor was associated with a para-
metric regressor modelling the reward prediction error computed at the
time of the final outcome (RPE2). In order to achieve a uniform scaling of
the output regression parameters, the parametric regressors representing
RPE1, PRPE and RPE2 were standardized to a mean of 0 and a standard
deviation of 1 (Erdeniz et al., 2013). The two parametric regressors
included in the pseudo-feedback regressor were moderately correlated
(M¼ 0.61). In order to avoid multicollinearity issues, the PRPE regressor
was orthogonalized with respect to the RPE1. With this procedure we
aimed to examine whether variations in PRPEs may still account for
variations in the BOLD signal after removing the variance shared with
RPE1. All regressors were subsequently convolved with the canonical
hemodynamic response function and entered in a first level analysis. A
high-pass filter with a cut-off of 128 s was applied to the time series.
Three main contrasts of interest, testing the slopes of RPE1, PRPE and
RPE2 regressors, were built at the first level. These contrast images were
introduced into separate second-level group analysis based on
one-sample t-tests. In order to study the conjunction of these three con-
trasts, first-level images were also introduced into a flexible factorial
design. The conjunction analysis was formulated as a conjunction null
hypothesis (Friston et al., 2005; Nichols et al., 2005) and should there-
fore only yield activations that were significantly present in all the con-
trasts introduced in the conjunction. Finally, in order to assess the
relationship between participants' behavior and the BOLD signal in RPE-
and PRPE-sensitive regions, we also performed a simple regression
analysis using the proportion of free-choices in which participants
selected the Key þ as a covariate and PRPE-RPE1 contrast. As mentioned
above, we use this measure as an index of the participants’ preference for
the pseudo-rewarding option over the entire task. Based on our a priori
hypothesis about the role of the ventral striatum in computing prediction
errors, we restricted the correction for multiple comparisons to this re-
gion. Specifically, all results are reported at a voxel-level threshold of
p< .05 family-wise error (FWE) corrected within a small ventral striatal
volume defined a priori based on an anatomical mask of the bilateral
Nucleus Accumbens derived from the probabilistic atlas of Hammers
et al. (2003). Stereotaxic coordinates are reported in MNI space.

3. Results

3.1. Behavior

Participants presented on average a preference for the Keyþ
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(M ¼ 0.58, STD ¼ 0.14), which was significantly above the chance level
of 0.50 [t(19)¼ 2.46, p¼ .02] (Fig. 3A). This result is particularly
interesting given that both keys were strictly equivalent in terms of final
reward probability. Indeed, while some individuals showed a clear
preference towards the Keyþ, none of participants seemed to develop
such a bias towards the Key- (Fig. 3A). We used a conservative binomial
tests to objectivize this observation at the individual level: while 8 out of
20 participants showed a significant preference towards themost pseudo-
rewarding key (i.e. a proportion of Key þ choices significantly above
0.50), none of the participants showed a preference towards the least
pseudo-rewarding key. This preference for the Keyþ was acquired
throughout the task as suggested by a clear effect of time [F(1,19)¼ 8.66,
p< .01, Fig. 3B]. Across all participants, the preference for the
Key þ significantly increased from the first to the second half of the
experiment [t(19)¼ 2.63, p¼ .016]. Indeed, while participants’ prefer-
ence was not significantly different from chance level (p¼ .05) during
the first half [M¼ 0.54, SD¼ 0.17; t(19)¼ 1.03, p¼ .315], it was
significantly above chance level during the second half [M¼ 0.62,
SD¼ 0.15; t(19)¼ 3.56, p¼ .002].

The logistic regression analysis revealed a significant effect of both
the history of rewards [t(19)¼ 2.3, p¼ .03] and pseudo-rewards,
[t(19)¼ 2.6, p¼ .02] on participants' choices, suggesting that partici-
pants were influenced by both types of feedback (Fig. 3C). As expected,
the beta parameter quantifying the weight of pseudo-rewards in the
choice process showed a strong correlation with participants' preference:
the strongest the preference for the Keyþ, the strongest the influence of
pseudo-rewards in participants’ choices [r(18)¼ 0.94, p< .001].
3.2. Striatal representation of prediction errors

Fig. 4 shows that brain activity in the bilateral ventral striatum
correlated significantly with RPEs at the time of both the pseudo-
feedback (RPE1, p< .001 FWE Small Volume Correction, SVC; left:
x¼�10, y¼ 9, z¼�10; right: x¼ 9, y¼ 9, z¼�7) and the final feed-
back (RPE2, p< .001 FWE SVC; left: x¼�10, y¼ 9, z¼�10; right:
x¼ 9, y¼ 9, z¼�7). Ventral striatal activity also correlated with PRPE
at the time of the pseudo-feedback (p< .01, FWE SVC; left: x¼�9,
y¼ 9, z¼�7; right: x¼ 9, y¼ 9, z¼�7). In addition, the conjunction of
the three contrasts (PRPE, RPE1 and RPE2) revealed significant acti-
vation in both the left and right ventral striatum (p< .01, FWE SVC; left:
x¼�7, y¼ 9, z¼�7; right: x¼ 9, y¼ 9, z¼�7). The brain T-maps
illustrating the main fMRI results can be accessed at https://neurovau
lt.org/collections/4487/. In a complementary analysis, we extracted
the mean contrast estimates within the bilateral NAcc for each of the
three main prediction errors in each participant, and then tested
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whether the group average estimates were significantly different from
zero using two-tailed t-tests. As expected, we found significant positive
effects, confirming that brain activity in the NAcc is correlated with
PRPE [t(19)¼ 3.98, p< .001], RPE1 [t(19)¼ 4.13, p< .001], and RPE2
[t(19)¼ 4.67, p< .001].

Since the ventral striatum is encoding both PRPEs and RPEs, we
wondered whether the relative sensitivity to these two error terms would
predict the behavioral preference for the Key þ across participants. To
assess this relative striatal sensitivity to PRPEs vs RPEs, we contrasted the
corresponding parametric regressors reflecting how steeply these error
terms scale with BOLD signal (PRPE-RPE1), and used the preference for
the Key þ as a covariate in a whole-brain simple regression analysis. We
observed that the relative sensitivity to PRPEs vs RPEs was positively
correlated with participants' preference specifically in the left (p< .001
FWE SVC; x¼�10, y¼ 9, z¼�7) and the right ventral striatum (p < .05
FWE SVC; x¼ 9, y¼ 6, z¼�7). In other words, the higher the preference
for the Keyþ, the greater the sensitivity to PRPEs compared with RPEs in
the ventral striatum following pseudofeedback (Fig. 5). It is important to
note that this relationship was not merely driven by brain-behavior
correlations between participants' preferences and NAcc sensitivity to
either RPEs or PRPEs alone, since no significant voxels were found when
participants' preference was regressed against the parametric regressors.
Complementary ROI analysis within the bilateral NAcc also showed a
positive correlation between participants’ performance and the relative
NAcc sensitivity to PRPEs vs RPEs [r(18)¼ 0.57, p¼ .009]. Such a sig-
nificant relationship was not present when using the contrast estimates
from the PRPE [r(18)¼ 0.39, p¼ .09], the RPE1 [r(18)¼�0.365,
p¼ .11], or the RPE2 [r(18)¼ 0.09, p¼ .71] alone.
3.3. Control experiment

We performed an additional behavioral experiment to rule out the
possibility that the observed behavioral bias was merely driven by par-
ticipants' prior experience with keys and locks. Given that the sequence
key-lock-open is quite common in everyday life, opening boxes may
already have a pre-learned reward value that could explain the observed
preference for the pseudo-rewarding key. To rule out this explanation, we
tested a new group of 19 participants engaging in the same task as the
fMRI experiment, but now using arbitrary cues instead of keys and locks
(Fig. S1, more details in Supplementary Information). Notably, partici-
pants also developed a preference towards the most pseudo-rewarding
option (t(18)¼ 2.6, p¼ .018, Fig. S2). These results replicate our previ-
ous findings using a more arbitrary design in a new group of participants,
and thus confirm that participants’ bias towards pseudo-rewards is not
driven by pre-learned reward values.
Fig. 3. Behavioral results across the 3� 23 free
choice trails of the task (n¼ 20). A) Box and
whisker plot for the proportion of choices of the
most pseudo-rewarding key (KEYþ). The box
extends from the 25th to 75th percentiles. The
line in the middle of the box is plotted at the
median. The whiskers represent the largest and
smallest values no further than 1.5*IQR (inter-
quartile range). Grey dots represent individuals
who showed a significant preference towards the
KEYþ, while black dots represent individuals
who did not showed a preference for the KEYþ
(based on a binomial text). B) Participants' pref-
erence across trials (mean � SEM). Each bin
comprises 6 trials. Note a clear increase from the
initial trials to the last trials of the task, indicating
that the preference for the KEYþ is acquired
through learning of contingencies. C) Average
regression weights for pseudo-reward and reward
from the logistic regression analysis.
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Fig. 4. Striatal representation of reward and
pseudo-reward prediction errors. T-maps
showing the brain regions in which a positive
relationship was observed across trials between
BOLD activity and the various errors terms,
namely RPE1 (reward prediction error at the
time of pseudo-feedback), PRPE (pseudo-reward
prediction error at the time of pseudo-feedback)
and RPE2 (reward prediction error at the time
of final feedback). The last panel on the right
illustrates the conjunction of the three previous
relationships in the ventral striatum. Note that,
in all T-maps, peak activations in the bilateral
ventral striatum survive a voxel-wise threshold of
p< .01 family-wise error (FWE) corrected within
a small volume defined a priori based on an
anatomical mask of the bilateral Nucleus
Accumbens (Hammers et al., 2003). Coordinates
are in MNI space.

Fig. 5. Brain-behavior relationship. T-map
displaying the striatal voxels in which a sig-
nificant relationship was found between
relative striatal sensitivity to PRPEs vs RPEs
and the behavioral preference for the
Key þ across participants. Note that peak
activations in the bilateral ventral striatum
survive a threshold of p < .05 family-wise
error (FWE) corrected within a small vol-
ume defined a priori based on an anatomical
mask of the bilateral Nucleus Accumbens
(Hammers et al., 2003). The scatter plot,
shown for purely illustrative purposes, illus-
trates the same relationship in the striatal
voxels found to be significant in the
voxel-wise analysis. Coordinates are in MNI
space.
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4. Discussion

In the present study, we aimed to investigate whether pseudo-rewards
could bias choice behavior –in a context where obtaining these pseudo-
rewards does not confer any advantage– and whether such a bias
might reflect striatal sensitivity to pseudo-rewards. In order to test these
hypotheses, we developed a novel fMRI task in which participants had to
first accomplish a subgoal (unlocking a box¼ pseudo-reward) to obtain a
probabilistic monetary reward. Participants presented a significant
preference towards the key that was unlocking more boxes (i.e. more
pseudo-rewarding) even though it did not lead to more monetary reward.
Importantly, the inclusion of forced-choice trials ensured that partici-
pants sampled both options equally, and thus that the behavioral pref-
erence did not result from imbalanced learning between the two arms of
the task (Niv et al., 2002). This finding were replicated later in a second
group of participants engaging in a modified version of the task using
arbitrary cues instead of keys and locks; this suggests that the observed
bias towards the most pseudo-rewarding option is not driven by
pre-learnt reward values. At the brain level, we observed a parallel rep-
resentation of reward and pseudo-reward prediction errors in the ventral
striatum. Notably, the relative striatal sensitivity to PRPEs vs RPEs pre-
dicted individual differences in the behavioral preference for the most
pseudo-rewarding key. Our findings reveal a clear bias in participants’
choices driven mainly by the availability of pseudo-rewards. However,
this bias cannot be considered sub-optimal in the present study since both
options were equally rewarded and the bias was thus not associated with
a cost. Nevertheless, it provides evidence that individuals tend to rely on
pseudo-reward information in order to guide their choices during
learning.

Our fMRI results showed that both RPEs and PRPEs are
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simultaneously encoded within the ventral striatum. This finding sup-
ports the idea that subgoal-related PEs recruit the same brain circuitry as
goal-related PEs, i.e. they engage similar brain regions and elicit similar
ERP components as classic signed and unsigned RPEs (Ribas-Fernandes
et al., 2011, 2019; Diuk et al., 2013; Shahnazian et al., 2018). Moreover,
it highlights the role of the striatum for computing prediction errors at
several levels of complexity, and that dissociable prediction errors are
integrated in this same structure (Daw et al., 2011; Diuk et al., 2013). In
particular, our findings are in line with those previously reported by Diuk
et al. (2013). This is remarkable given the differences in design between
studies and the stringent orthogonalization procedure we used, which
ensured that the PRPE regressor explained a significant amount of unique
BOLD variance over and beyond the classic RPE. Additionally, Diuk et al.
(2013) used a RL model in which RPEs only arose at the end of a trial
when the outcome was presented. According to their model, reward
expectancies did not vary from the first decision until the final outcome.
In the context of the current task, their model would not anticipate po-
tential outcomes based on whether the box was unlocked or not. In
contrast, we have assumed a TD perspective, that is, a continuous-time
model of learning in which any piece of information provided between
the first decision and the final outcome can lead to a RPE and can be used
to generate new reward expectations.

In addition, we have showed that the relative striatal sensitivity to
PRPEs vs RPEs influences participants' behavior. Specifically, greater
relative striatal sensitivity to PRPEs vs RPEs was associated with stronger
preference for the most pseudo-rewarding key. In an analogous fashion,
Daw et al. (2011) have shown that striatal sensitivity to model-free vs
model-based RPEs signals predicted participants’ preference for
model-free vs model-based learning strategy. Together, these results not
only suggest that the ventral striatum encodes simultaneous learning
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signals, but also that these learning signals play a strong role in shaping
behavior. However, the idea that the striatum may encode multiple and
concomitant prediction error signals poses the question of how are these
learning signals are distinguished. This important question, which has
been raised previously by Diuk et al. (2013) and Daw et al. (2011), will
need to be addressed in future studies. One possibility is that the striatum
is involved in integrating prediction error signals in order to guide
behavior, rather than playing a role in learning per se. This line of
reasoning agrees with previous studies suggesting that the ventral stria-
tum does not have an exclusive role in encoding reward prediction errors,
but is involved in encoding the behavioral relevance of events (Klein--
Flugge et al., 2011; Li and Daw, 2011; FitzGerald et al., 2014). For
instance, Klein-Flugge et al. (2011) have shown that, in contrast to
midbrain activity reflecting RPE signals in the absence of a behavioral
policy, the ventral striatum responds mainly to those events that are
relevant to guide behavior. Some authors have further theorized that
striatal activity might mediate the dynamic attribution of incentive
salience to events, causing them and their associated actions to become
more relevant for future decisions (Berridge, 2007).

It might be noted that the present results could also reflect sign-
tracking behavior. Sign-tracking refers to the tendency of individuals to
direct their behavior towards a stimulus that has become attractive and
desirable as a result of a learned association between that stimulus
(conditioned stimulus, CS) and a reward (such as food). In this context,
individuals may become attracted towards the CS even when the CS is
located far from the paired reward or in an opposite direction (Flagel
et al., 2009). Thus, the CS does not only act as a predictor of reward but
also acquires motivational properties, becoming a “motivational mag-
net”. Previous studies have shown that there are large individual dif-
ferences in this type of behavior, with some individuals engaging almost
exclusively with the CS (sign-tracking) while others use this information
to predict the location of the reward (goal-tracking) (Flagel et al., 2009;
Robinson et al., 2014; Morrison et al., 2015). Similarly, in the current
task, some participants may have assigned motivational properties to the
pseudo-reward while others may have not. Thus, pseudo-rewards may
also induce sign-tracking behavior and may, in part, explain the large
individual differences in solving complex structured tasks in our
everyday life. However, this account remains speculative, and further
studies comparing performance in well-established sign-tracking para-
digms with participants’ preference in the current task are required to
better understand the relationship between pseudo-reward and
sign-tracking behaviors.

It is important to emphasize that the behavioral bias towards the
Key þ cannot be explained by the desire to reduce uncertainty as re-
ported in theories such as “temporal resolution of uncertainty” (Kreps
and Porteus, 1978) or “information seeking” (Bromberg-Martin and
Hikosaka, 2009). Previous studies have shown that animals avoid be
uncertain about future outcomes (Bromberg-Martin and Hikosaka, 2009)
and often prefer to have this uncertainty resolved earlier rather than later
(Eliaz and Schotter, 2007). However, in the present study, the option
leading to the biggest reduction in final outcome uncertainty was the
least pseudo-rewarding key, which led to a fully predictable outcome
(no-reward following locked box) in 70% of the cases. Thus, choosing the
Key-provided more advance information about the upcoming outcome
than the Keyþ, which was associated with full uncertainty resolution at
the time of pseudo-feedback in only 30% of the trials.

In sum, we have shown that pseudo-rewards can influence partici-
pants' choices independently of the reward value associated with them.
Thus, although they are critical for speeding up learning in complex
environments, they might potentially lead to behavioral biases towards
the accomplishment of subgoals. Additionally, using a novel paradigm
we have shown that RPEs and PRPEs are simultaneously encoded in the
ventral striatum, and that the relative sensitivity of the striatum to PRPEs
vs RPEs predicted participants’ choices, emphasizing the relevance of the
striatum in complex learning problems and decision-making.
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