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Cognitive control helps us attain our goals by resisting

distraction and temptations. Some of us strive to enhance it

beyond normal, for example by means of dopaminergic

medication like methylphenidate. However, the cognitive

effects of such smart drugs are unclear. What we need is an

understanding of the mechanisms by which dopamine

modulates cognitive control. Advances in cognitive

neuroscience highlight a role for dopamine in cost–benefit

decision-making. I build on these advances by re-

conceptualizing cognitive control as involving not just

prefrontal dopamine, but also modulation of cost–benefit

decision-making by striatal dopamine. This approach will help

us understand why we sometimes fail to (choose) to exert

cognitive control, while also identifying mechanistic factors that

predict dopaminergic drug effects on cognitive control.
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Introduction
Cognitive control is a poorly defined term, but can be

broadly conceptualized as the set of mechanisms required

for pursuing a goal, especially when distraction or com-

peting responses must be overcome. One key aspect of

cognitive control is the ability to maintain, stabilize and

focus on current goal-representations. This ability is

particularly well developed in human animals, but fail-

ures of cognitive control and focus are common, not only

in neuropsychiatric disorders such as attention-deficit(/

hyperactivity) disorder (AD(H)D) and addiction, but also

in healthy states such as fatigue or stress. Cognitive

control deficits can be remedied using medication that

increases dopamine and noradrenaline, such as methyl-

phenidate and modafinil [1,2]. Methylphenidate acts by

blocking the dopamine and noradrenaline transporter and
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is used to combat cognitive control deficits, seen in

disorders like AD(H)D, but also increasingly so by

healthy people for cognitive enhancement, as smart pills.

Estimates of the proportion of healthy students using

drugs like methylphenidate off-label range from 4% to

16% [3]. One problem is that smart drugs do not help

everyone in every context. Effects of catecholaminergic

drugs, such as methylphenidate and modafinil, vary great-

ly, not only across individuals, but also across tasks. The

same drug can improve cognitive performance in one

context, while impairing it in another, depending on task

demands. Resolving the large variability in catecholamin-

ergic drug effects is a key scientific puzzle and requires an

understanding of the neurocognitive mechanisms by

which dopamine and noradrenaline alter cognitive con-

trol. In this review I focus on dopamine’s role in cognitive

control, while recognizing that another key challenge for

research ahead is to disentangle dopamine’s from nora-

drenaline’s role in the mechanisms discussed below.

Specifically, following prior work [10], I argue that dopa-

minergic drugs have different cognitive effects depend-

ing on the neural locus of their action, with prefrontal and

striatal dopamine having opposite effects on our tendency

to stabilize current goal-representations. Here I progress

beyond these prior observations by beginning to assess

the mechanisms underlying the contribution of striatal

dopamine to cognitive control.

One first step towards such progress in our understanding

of dopamine’s role in cognitive control involves a redefi-

nition of cognitive control that extends beyond the com-

mon emphasis on persistence, for example, on the ability

to maintain, focus and stabilize current goal representa-

tions and protect them against distraction. Adaptive

behaviour depends not just on cognitive focus and stabi-

lization but, given the many changes in our environment,

requires instead a dynamic equilibrium between the

distinct, opponent cognitive actions of goal-stabilization,

important for a cognitively focused state, and goal-desta-

bilization, important for a cognitively flexible state.

The next step is to determine how we arbitrate between

these different cognitive states involving goal-stabiliza-

tion and goal-destabilization. This involves re-conceptu-

alizing cognitive control as a cost–benefit decision instead

of solely an implementation challenge. Classic prefrontal

models of cognitive control address primarily our ability

to implement control. Recent advances have led to a shift

away from this question of ‘how do we implement cogni-

tive control’ to ‘how do we decide whether to recruit

cognitive control?’. This is grounded in opportunity cost

and expected value models of cognitive control [4,5��] as
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well as work on striatal dopamine’s role in reinforcement

learning and motivation [6��]. It involves reframing the

problem of cognitive control as a choice dilemma, shaped

by learning mechanisms that serve to maximize reward

and concurs with ideas that working memory allocation is

value-based [7–9]. Addressing this will help us understand

why we so often fail to (choose to) exert cognitive control,

despite it being a cornerstone of human cognition.

To make these two key steps, this review begins to

integrate hitherto separate lines of work on dopamine’s

role in cognitive control [10,11�] and dopamine’s role in

value-based decision-making [6��].

From static to dynamic cognitive states
The importance of persistence for cognitive control has

received much attention across different cognitive re-

search domains, including working memory [12�], selec-

tive top-down attention [13] and waiting for large rewards

[14�]. For example, the predominant neurobiological

model of working memory posits that stimulus informa-

tion is stored via stable, elevated (persistent) activity

within selective neurons [12�]. In line with this model,

cognitive control is often argued to involve the active

maintenance of patterns of persistent activity that repre-

sent current goals [15]. However, adequate control

requires more than the active maintenance of, and focus

on current goal representations. Our environment

changes constantly. While writing this article, a fire might

break out in the corridor behind me. To behave adap-

tively, I should allow my current goal representation (to

finish this article) to be destabilized by new, unexpected

inputs (the smell of smoke). Accordingly, there is increas-

ing recognition that adequate cognitive control involves a

dynamic adaptation of cognitive states, rather than merely

persistent information processing.

This development is paralleled by advances in the study

of large-scale brain networks [16], where researchers have

begun to recognize the benefits of variability and noise

[17,18] and the value of mind wandering and task-unre-

lated thoughts [19]. Growing evidence indicates that

large-scale brain networks are not stationary, but rather

adapt dynamically over time [20]. Such time-dependent

transitions between different network states might en-

able the brain to explore different functional configura-

tions, reflecting its capacity to flexibly adapt to different

contexts.

However, the mechanisms that drive these dynamic

transitions and that arbitrate between such distinct brain

states remain unknown. Biophysically realistic modelling

work has led to dual-state theory, which assigns a key role

to prefrontal dopamine [11�]. According to this theory,

prefrontal cortex networks are either in a D1-dominated

state, associated with intermediate levels of dopamine

and characterized by a high energy barrier favouring
www.sciencedirect.com 
robust stabilization of representations, or in a D2-domi-

nated state, associated with suboptimal or supraoptimal

levels of dopamine and characterized by a low energy

barrier favouring fast flexible shifting between represen-

tations [11�]. A concrete prediction that arises from this

theory is that dopaminergic drugs that optimize prefrontal

dopamine (leading to intermediate rather than subopti-

mal or supraoptimal levels) might bias the system towards

a stable state, good for goal-stabilization, but away from a

flexible state, bad for goal-stabilization. Preliminary data

from our lab can be captured by this dual-state framework

and show that oral administration of the dopamine

(and noradrenaline) transporter blocker methylphenidate

(20 mg, acute) to healthy volunteers improves perfor-

mance on a task requiring distractor-resistance of current

working memory representations, while impairing perfor-

mance on a well-matched task requiring flexible updating

of current working memory representations (S Fallon

et al., unpublished data; Figure 1). These behavioural

effects were accompanied by modulation of the prefrontal

cortex, consistent with studies suggesting that prefrontal

dopamine modulates the signal-to-noise ratio and the

distractor-resistant maintenance of working memory pat-

terns by acting on the prefrontal cortex [21�]. The signal-

to-noise enhancing effects might be mediated by D1

receptor-dependent modulation of the distractor-resis-

tance of delay-period activity in dorsolateral PFC [22].

Indeed increases in prefrontal dopamine D1 activity can

potentiate the reliability of currently task-relevant

responses [23�] and theoretical accounts highlight pre-

frontal dopamine’s role in the precision of beliefs about

the attainability of future goals [24]. Thus optimal levels

of prefrontal dopamine seem key for the stabilization of

current goal representations. Our preliminary data (Fallon

et al., unpublished data) suggest that this enhanced sta-

bilization is accompanied, however, with performance

impairment, when the current context requires goal-de-

stabilization.

The potentiating effects of dopamine on the stabilization

of current working memory representations in prefrontal

cortex might incidentally also underlie the enhancing

effects of dopaminergic medication in Parkinson’s disease

on goal-directed (as opposed to habitual) control of be-

haviour [25], which relies on the ability to keep online an

explicit representation of the outcome (value) of behav-

iour [26]. In line with this observation, levodopa in

healthy volunteers enhances model-based over model-

free reinforcement learning in a sequential choice task

[27], which also depends critically on working memory

capacity [28] and explicit representations of the outcome

(value) of behaviour [29].

However, the prefrontal cortex plays an important role,

not just in the stabilizing aspects of cognitive control, but

also, and perhaps primarily so, in the dynamic, adaptive

aspects of cognitive control. Indeed, the prefrontal cortex
Current Opinion in Behavioral Sciences 2015, 4:152–159



154 Cognitive enhancement

Figure 1

T

T

Encoding ProbeD
el

ay

D
el

ay

Intervening stimuli
(Ignore/Update)

+

Current Opinion in Behavioral Sciences 

Schematic of the experimental paradigm employed to measure goal-stabilization and goal-destabilization [59]. Each trial consisted of an encoding

period (two stimuli on either side of a ‘T’ for ‘target’), a delay period and a probe period. Two novel stimuli were presented in the middle of the

delay period. This delayed response task included two types of trials. On ignore trials, subjects had to ignore the intervening stimuli (not

accompanied by a ‘T’). On update trials subjects were instructed (using a ‘t’ for ‘target’ presented simultaneously with the stimuli) to use these

stimuli for updating working memory (displacing the original targets).
shows highly adaptive information coding, and is part of a

network encoding multiple demands [30�,31��]. Dopa-

mine has been argued to modulate such adaptive coding,

in part by acting directly on the prefrontal cortex [32,33],

for example by modulating short-term synaptic plasticity

[31��] and/or biasing the system into a flexible D2 state

[11�]. Nevertheless the mechanisms by which such adap-

tive coding is elicited remain unclear. Below I propose

that dopamine in the striatum might play a complemen-

tary role to that of prefrontal dopamine.

Striatal dopamine and flexible cognitive
control
The prefrontal cortex does not act in isolation to elicit

flexible adaptive control, but rather interacts with a set of

deep brain subcortical structures, in particular the basal

ganglia, in so-called fronto-striato-thalamo-frontal circuits

to selectively gate both action as well as attention

[34�,35,36]. Dopamine might well act through striato-

thalamo-frontal circuitry to regulate information transmis-

sion between the prefrontal cortex and stimulus-specific

regions in posterior cortex, depending on changing atten-

tion demands [34�,37�] (Figure 2), generally consistent

with the recent proposal that subcortical systems gate the
Current Opinion in Behavioral Sciences 2015, 4:152–159 
synchronization of neuronal populations across distinct

cortical regions [38]. But how would the striatum know

when to elicit flexible cortical gating, that is where to set

the threshold for attention shifting? One possibility is that

such dynamic gating is elicited by dopamine-dependent

changes in the expected mental costs and benefits of

cognitive control [4,8,35,39,40��].

Striatal dopamine and cost–benefit decision-
making
Empirical data on the role of striatal dopamine are often

grounded in theories about reinforcement learning and

cost–benefit decision-making [6��]. In particular, tonic

dopamine transmission in the striatum is thought to alter

the threshold for allocating physical resources (energizing

behaviour) and thus bias cost–benefit decision-making

policies about whether to exert physical effort to obtain

reward [6��,41–44]. One question for future work is

whether analogous (striatal dopaminergic) mechanisms

contribute to decision-making about mental effort [45,46].

This question is timely, given recent accounts that recast

the problem of cognitive control in terms of a decision-

making (or arbitration) problem, requiring integration of

the expected payoff and mental effort cost of controlled
www.sciencedirect.com
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Figure 2
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(a) Attention-switching paradigm used to assess striatal modulation of top-down attentional control [32]. Subjects were instructed to covertly

attend to the left or right visual hemifield. On each trial (repeat trials), they had to discriminate the direction of a moving dot pattern at the

attended side, while ignoring the unattended side (random noise). On switch trials, a moving dot pattern on the unattended side triggered a switch

in attention. Subjects then continued performing the task on the opposite visual hemifield. (b) Non-linear dynamic causal modelling showed that

BOLD data, acquired during the performance of this task, were consistent with a model, in which the striatum facilitates bottom up, salience-

driven attentional shifts via modulation of top-down control of stimulus-specific regions in sensory cortex [34�]. Specifically, Bayesian model

averaging showed that the basal ganglia both suppress previously attended visual information and enhance the newly attended visual information,

via modulation of frontal top-down connections. (c) In line with this model, the basal ganglia inhibited connection strength with the left visual

cortex when subjects switched attention to the left visual hemifield, but enhanced connection strength with the left visual cortex when subjects

switched attention to the right visual hemifield. The opposite pattern was observed in the right visual cortex.

Adapted from Ref. [32].
processing, to determine whether to allocate cognitive

control [4,39,40��,47,48]. If so, then failures of cognitive

control (and related constructs, such as model-based

learning) would not necessarily reflect a problem with

the implementation of control, but might reflect mental

demand avoidance [49��], a motivated choice-bias away

from exerting mentally costly tasks, such as those involv-

ing cognitive control, and/or towards exerting mentally

easy tasks.

Dopamine and opportunity costs
According to recent opportunity cost theory of mental

effort, the experience of mental effort, often accompanied

by distractibility and mind-wandering, is proportional to

an opportunity cost of persisting with the current task,

equal to the foregone benefits of performing alternative

tasks [5��]. These ideas are grounded in older motivational

accounts of mental fatigue [50], and state that adequate

performance of cognitive control tasks is costly, because

they require focusing on current tasks, which interferes

with performing rewarding alternative tasks. The experi-

ence of mental effort might then elicit the re-allocation of

computational processes to more valuable alternatives,

consistent with evidence that mental effort elicits flexible

reconfiguration of intrinsic large-scale brain networks [51].

This position is reminiscent of the proposal that tonic

dopamine promotes physically effortful response vigour
www.sciencedirect.com 
by encoding the average net expected reward rate, a

global, slowly changing term common to all the states

and actions evaluated, which translates to the opportunity

cost of wasted time, or sloth (and thus delaying future

reward): the higher the level of tonic dopamine, the higher

the expected reward rate, the more costly it is to delay

motor responding [52,53�]. By analogy, the opportunity

cost of mental effort might also be carried by tonic dopa-

mine, with higher tonic dopamine corresponding to higher

average expected reward rates of all available (including

alternative) tasks and thus higher costs of the mentally

effortful cognitive focusing state. These higher mental

effort costs would then motivate destabilization of current

goals and switching to alternative tasks. Mental effort

might thus translate to a striatal dopamine-dependent

motivational signal updating the trade-off between dis-

tinct cognitive states. One concrete hypothesis that arises

from this proposal is that dopaminergic drugs that increase

striatal dopamine might bias subjects away from choosing

to perform effortful cognitive control tasks that require

goal-stabilization (Figure 3).

To test this hypothesis, it will be necessary to objectively

quantify the mental effort cost associated with different

cognitive states involving goal-stabilization and goal-de-

stabilization, as a function of the reward value of available

tasks. In recent work on mental effort, neuroeconomic

discounting procedures have been used to measure the
Current Opinion in Behavioral Sciences 2015, 4:152–159
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Figure 3
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Working hypothesis. Dopaminergic drugs have distinct effects on cognitive control depending on the modulated target region. Dopaminergic drug

effects are known to depend on baseline levels of dopamine, according to an inverted-U shaped relationship between dopamine and cognitive

performance (not reviewed here, see Ref. [8]). Prefrontal dopamine is argued to affect the sharpening and stabilization of current goal

representations. Conversely, striatal dopamine might act to bias cognitive control by modulating effort cost-based decision making about whether

or not to exert cognitive control. Specifically, increases in striatal dopamine might be accompanied by enhanced average reward rate of all

available (including alternative) tasks, thus motivating subjects to decide to avoid cognitively effortful computations such as goal-stabilization.
subjective value of mental effort by quantifying the

extent to which effortful tasks cause subjects to discount

monetary rewards [40��]. The use of such neuroeconomic

procedures in combination with (pharmacological) neu-

roimaging techniques might enable us to investigate

whether putative dopaminergic drug effects on the sub-

jective cost/value of mental effort are mediated by drug

effects on striatal dopamine. This approach will also allow

us to test the complementary hypothesis, raised by vari-

ous recent studies [4,48,54,55], that decision-making

about mental effort also implicates frontal cortical regions,

such as the anterior cingulate cortex, the anterior insula

and the lateral frontal cortex.

The opportunity cost might also feature in another cor-

nerstone of cognitive control, the capacity to delay grati-

fication [14�,56]. In delay discounting paradigms, the

opportunity cost is higher when subjects have to wait,

while not doing anything else, than when being allowed

to complete other activities during a delay preceding a
Current Opinion in Behavioral Sciences 2015, 4:152–159 
large reward. Manipulating the opportunity cost of delay

in delay gratification tasks can alter the discounting rate

[57]. Administration of levodopa to healthy volunteers

indeed increased impulsive choice of a small, immediate

reward over a large, delayed reward by enhancing the

diminishing influence of increasing delay on reward value

(temporal discounting) and its corresponding neural re-

presentation in the striatum [58]. This result is consistent

with the hypothesis that dopaminergic drugs can bias

decision making away from prefrontal processes such as

waiting for reward by acting in the striatum to enhance

the cost of waiting and/or enhance the value of immediate

action. Future work should elucidate the differences and

similarities between mental effort and delay discounting.

Conclusion
Brain dopamine plays an important role in our ability to

dynamically regulate the balance between opponent cog-

nitive states, such as those involving goal-stabilization

versus goal-destabilization, by adjusting processing in
www.sciencedirect.com
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circuits connecting the prefrontal cortex with the striatum.

Specifically dopamine might promote goal-stabilization or

goal-destabilization depending on the neural site of mod-

ulation. Optimal dopamine D1 receptor stimulation in

prefrontal cortex promotes the stabilization of current goal

representations by increasing the distractor-resistance,

signal-to-noise ratio and/or reliability of these representa-

tions. Conversely, optimal levels of tonic dopamine in the

striatum might bias value-based decision-making away

from excessive goal-stabilization, by increasing its oppor-

tunity cost, which is equal to the net average expected

reward rate associated not just with the current goal but

also with available alternative goals. The functional oppo-

nency between goal-stabilization and goal-destabilization

maps well onto the neurochemical reciprocity between

dopamine in the prefrontal cortex and the striatum:

Increases in prefrontal dopamine lead to decreases in

striatal dopamine and vice versa. This observation inci-

dentally also highlights the powerful self-regulatory ca-

pacities of the endogenous ascending neuromodulatory

systems, a core function which might help the brain adapt

itself to our ever changing environment. Whether we can

potentiate this capacity of adaptive, dynamic cognitive

control by external means, for example by enhancing

dopamine (and noradrenaline) using dopaminergic (smart)

drugs, remains an open question. The available evidence

suggests instead that dopaminergic (smart) drugs bias the

system towards one state at the expense of another,

depending on demands for goal-stabilization and the

neural (frontal versus striatal) region of drug action.

Addressing this issue requires future work combining

pharmacological neuroimaging with experimental para-

digms that measure the dynamic balance between the

oppponent cognitive states of goal-stabilization and goal-

destabilization, as well as the ability to arbitrate between

distinct cognitive states depending on task demands.
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