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Abstract Catecholamines modulate the impact of motivational cues on action. Such motivational

biases have been proposed to reflect cue-based, ‘Pavlovian’ effects. Here, we assess whether

motivational biases may also arise from asymmetrical instrumental learning of active and passive

responses following reward and punishment outcomes. We present a novel paradigm, allowing us

to disentangle the impact of reward and punishment on instrumental learning from Pavlovian

response biasing. Computational analyses showed that motivational biases reflect both Pavlovian

and instrumental effects: reward and punishment cues promoted generalized (in)action in a

Pavlovian manner, whereas outcomes enhanced instrumental (un)learning of chosen actions. These

cue- and outcome-based biases were altered independently by the catecholamine enhancer

melthylphenidate. Methylphenidate’s effect varied across individuals with a putative proxy of

baseline dopamine synthesis capacity, working memory span. Our study uncovers two distinct

mechanisms by which motivation impacts behaviour, and helps refine current models of

catecholaminergic modulation of motivated action.

DOI: 10.7554/eLife.22169.001

Introduction
Catecholamine (i.e. dopamine and noradrenaline) transmission has long been implicated in key

aspects of adaptive behaviour, including learning, action, and motivation. Deficits in these aspects of

adaptive behaviour are observed in a wide range of neuropsychiatric disorders, such as attention

deficit hyperactivity disorder, Parkinson’s disease, and addiction (Dagher and Robbins, 2009;

Prince, 2008; Skolnick, 2005), and many of those deficits can be treated with catecholaminergic

drugs (Faraone and Buitelaar, 2010; Wigal et al., 2011). While overwhelming evidence implicates

catecholamines in both motivated activation and motivated learning of behaviour (Bromberg-

Martin et al., 2010; Robbins and Everitt, 1996; Wise, 2004), their respective contributions are still

highly debated. In this study, we dissect the contribution of catecholamines to motivational biases in

behavioural activation and learning.

The neuromodulator dopamine has been linked particularly strongly to behavioural activation in

the context of reward (Taylor and Robbins, 1986; 1984), putatively by amplifying the perceived

benefits of action over their costs (Collins and Frank, 2014; Niv et al., 2007). This behavioural acti-

vation to reward-predicting cues is likely to be, at least partly, Pavlovian in nature, with the condi-

tioned cues eliciting innately specified responses (Figure 1A). The Pavlovian nature of these
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motivational biases has been demonstrated using Pavlovian-instrumental transfer (PIT) paradigms

(Estes and Skinner, 1941; Estes, 1943). In PIT, conditioned cues elicit innately specified responses

that may potentiate (or interfere with) instrumental responding, e.g. appetitive cues promote active

responding (appetitive PIT), whereas aversive cues increase behavioural inhibition (aversive PIT;

Davis and Wright, 1979; Huys et al., 2011). Enhanced dopamine increases appetitive PIT

(Wyvell and Berridge, 2000), while appetitive PIT is lowered when striatal dopamine is reduced

(Dickinson et al., 2000; Hebart and Gläscher, 2015; Lex and Hauber, 2008). Striatal dopamine has

also been linked to controlling aversively motivated behaviour (Faure et al., 2008; Lloyd and

Dayan, 2016). Together, these results show that appetitive cues promote activation and aversive

cues promote inhibition in a Pavlovian manner, mediated by the dopamine system.

While Pavlovian response biases can be helpful in reducing computational load by shaping our

actions in a hardwired manner, they are inherently limited because of their general nature

(Dayan et al., 2006). In order to select the best action in a specific environment, instrumental sys-

tems allow organisms to adaptively learn action-outcome contingencies, by assigning value to

actions that in the past have led to good outcomes, while reducing value of actions that led to nega-

tive outcomes (Dickinson and Balleine, 1994; Rescorla and Wagner, 1972; Robbins and Everitt,

2007). Pavlovian and instrumental learning are often presented as a dichotomy, whereby cue-based,

Pavlovian effects are solely responsible for motivational biases, while adaptive ‘rational’ choice

results from instrumental learning. For example, multiple recent studies showing that reward or pun-

ishment cues bias action, eliciting appetitive activation and/or aversive inhibition, have been inter-

preted specifically in terms of a Pavlovian response bias (for a review see Guitart-Masip et al.,

2014a).

We hypothesised that these motivational biases of behavioural activation may also arise from

asymmetrical, or biased, instrumental learning (Figure 1B), in addition to Pavlovian response biases.

Such biases in learning, like response biases, may reflect predominant statistics of the environment.

eLife digest When we see a threat, we tend to hold back. When we see a reward, we have a

strong urge to approach. Most of the time, these hardwired tendencies – or biases – are the right

thing to do. However, our behaviour is not all hardwired; we can also learn from our previous

experiences. But might this learning be biased too? For example, we might be quicker to believe

that an action led to a reward, because actions often do bring rewards. Conversely, we might be

less likely to attribute a punishment to having held back, because holding back usually helps us to

avoid punishments.

Swart et al. have now tested whether rewards and punishments influence our actions solely via

hardwired behavioural tendencies, or whether they also bias our learning. That is, are we biased to

learn that taking action earns us rewards, while holding back spares us punishments? Previous work

has shown that chemical messengers in the brain called catecholamines help us to take action when

we anticipate a reward. Swart et al. therefore also examined whether catecholamine levels

contribute to any bias in learning.

One hundred young healthy adults twice performed a task in which they could earn rewards and

avoid losses by taking or withholding action. By using a mathematical model to work out what

influenced the choices made by the volunteers, Swart et al. found that rewards and punishments did

indeed bias learning. Moreover, this learning bias became stronger when the volunteers took

methylphenidate (also known as Ritalin), a drug that increases catecholamine levels and which is

used to treat ADHD and narcolepsy. The volunteers varied markedly in how strongly

methylphenidate affected their choices. This emphasises how important it is to account for

differences between people when evaluating the effects of medication.

Motivations are what get us going and keep us going. The findings of Swart et al. mean that we

now have a better understanding of how motivations, such as desired rewards or unwanted

punishments, influence our behaviour. A future challenge is to understand how we can overcome

these motivations when they work against us, such as in addiction or obesity.

DOI: 10.7554/eLife.22169.002
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Figure 1. Distinct mechanisms by which motivational valence may bias behavioural activation. (A) Pavlovian

response bias: appetitive cues (green edge) elicit generalized behavioural activation (‘Go’), whereas aversive cues

(red edge) elicit behavioural inhibition (‘NoGo’). This Pavlovian response bias is introduced in model M3a as the

parameter p (c.f. Figure 3). (B) Instrumental learning bias: rewarding outcomes (upper panel) facilitate learning of

action (‘Go’, thick arrow) relative to inaction (‘NoGo’, thin arrow). Thus, learning effects at the individual trials t will

result in a cumulative selective increase of the rewarded action on later trials tn. Punishment outcomes (lower

panel) hamper the unlearning of inaction (‘NoGo’, dashed arrow) relative to action (‘Go’, solid arrow), resulting in

sustained inaction. Neutral outcomes are equally well associated with actions and inactions, and are not illustrated

here. The instrumental learning bias is introduced as the parameter k in model M3b (c.f. Figure 3). We assess

whether these two mechanisms (i) act in parallel, and (ii) are modulated by the catecholamine system. To test the

Figure 1 continued on next page
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For example, we might be quicker to believe that an action led to a reward, because actions often

cause rewards. However, we may not attribute a punishment to having held back, because holding

back usually helps avoid a punishment. Such an instrumental learning bias may arise from a circuitry

where reinforcers are more potent at driving learning following active ‘Go’ than inactive ‘NoGo’

actions. This means that Go responses (relative to NoGo responses) are easier to learn and unlearn

following reward and punishment respectively. This instrumental learning bias would predict that Go

responses that elicited a reward are more likely to be repeated (i.e. better learned) than NoGo

responses that elicited a reward. Similarly, Go responses that elicited a punishment are relatively less

likely to be repeated (i.e. better unlearned) than NoGo responses that elicited a punishment. These

instrumental learning and Pavlovian response biasing accounts of motivated (in)action could not be

dissociated in earlier studies (Cavanagh et al., 2013; Guitart-Masip et al., 2014b; 2012), because

they allowed for only a single Go response: With only one response option, general activation of

action cannot be disentangled from facilitated learning of a specific response. In our proposed

framework, motivational biases in behavioural (in)activation are likely the result of a combination of

Pavlovian response biasing plus an asymmetry in instrumental learning of Go and NoGo responses

(Figure 1).

At the neurobiological level, this hypothesis arises from current theorizing about the mechanism

of action of reinforcement-related changes in dopamine. Specifically, a potential substrate for this

proposed learning asymmetry could be provided by the striatal dopamine system, which is notably

involved in instrumental learning via modulation of synaptic plasticity (Collins and Frank, 2014 for

review and models). In this framework, dopamine bursts elicited by better than expected outcomes

reinforce the actions that led to these outcomes (Montague et al., 2004; Schultz et al., 1998;

Schultz et al., 1997) via long-term potentiation (LTP) in the striatal direct ‘Go’ pathway

(Frank et al., 2004). The temporal specificity of the phasic dopamine bursts allows for assigning

credit to the most recent action, by potentiating the recently active striatal neurons. Due to the LTP

in the ‘Go’ pathway, rewards may be more effective in reinforcing neurons coding for active Go

responses than NoGo responses. Conversely, dopamine dips elicited by worse-than-expected out-

comes (Matsumoto and Hikosaka, 2009; Tobler et al., 2005) lead to long-term depression (LTD) of

the ‘Go’ pathway and LTP in the ‘NoGo’ pathway, making it less likely that the same cue would elicit

an active than inactive response next time. In short, the striatal system is biased to attribute rewards

and punishments to active Go responses, which ecologically may be more commonly the cause of

observed outcomes. The implication of this is that is easier to learn to take action based on reward,

but easier to withhold making an action based on punishment.

A key additional prediction of this model is that prolonging the presence of dopamine, e.g. by

blocking dopamine reuptake with methylphenidate, would lead to a spread of credit assignment

(Figure 1C). Here, credit is assigned to striatal neurons that were recently active, due to recent

actions that did not actually lead to the current reward and phasic dopamine burst (‘spread of

effect’; Thorndike, 1933). In this framework, the dopamine system can produce biased motivated

behaviour due to (i) direct Pavlovian biases (e.g. predicted rewards potentiate the Go pathway dur-

ing action selection), and (ii) disproportionate potentiation of instrumental learning of Go actions

that (recently) led to reward. Put more simply, (i) dopamine bursts prompted by reward-predicting

cues can potentiate activation of the Go pathway, giving rise to the cue-based, Pavlovian activation,

and (ii) dopamine bursts prompted by reward outcomes can potentiate plasticity within the Go path-

way, making rewards more effective in reinforcing Go responses than NoGo responses.

Figure 1 continued

latter, we administered methylphenidate (MPH), which prolongs the effects of catecholamine release via blockade

of the catecholamine receptors. We first assess whether MPH affects the strength of the Pavlovian response bias,

introduced as the parameter pMPH in model M5a, and instrumental learning bias, implemented as the parameter

kMPH-selective in model M5b (c.f. Figure 5). (C) We hypothesise that prolonged effects of dopamine release

following reward outcomes will reduce (temporal) specificity, leading to spread of credit: Credit is assigned to

other recent actions (thin arrow), in addition to the performed (and rewarded) Go response (thick arrow), resulting

in additional learning of the alternative (not-performed) Go response. This MPH-induced diffuse learning bias is

implemented by the parameter kMPH-diffuse in model M5c (c.f. Figure 5).

DOI: 10.7554/eLife.22169.003
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In this study, we aimed to assess whether biases in instrumental learning contribute to the phar-

maco-computational mechanisms subserving well-established reward/punishment biases of moti-

vated (in)action. To dissociate biased instrumental learning from Pavlovian response biases, we

developed a novel experimental paradigm including multiple active response options (Figure 2),

and combined this task with a catecholamine challenge (catecholamine reuptake blocker methylphe-

nidate - MPH). We tested the following hypotheses: (i) cue-valence (appetitive vs. aversive cues)

biases action in a Pavlovian manner, whereas outcome-valence (reward vs. punishment) biases instru-

mental learning of Go vs. NoGo actions; (ii) blocking the catecholamine reuptake with MPH enhan-

ces the strength of the Pavlovian response bias as a result of prolonged dopamine release to reward

cues; (iii) MPH reduces the specificity of credit assignment to specific actions that elicited rewards,

as the prolonged DA release to reward outcomes would spread credit to non-chosen active actions

(Figure 1).

Finally, MPH prolongs the effects of catecholamine release by blocking the reuptake of catechol-

amines, without stimulating release or acting as a receptor (ant)agonist (e.g. Volkow et al., 2002).

Accordingly, it is likely that the effect of MPH on catecholamine-dependent function is a function of

dopamine synthesis capacity and release. Simply put, if there is no release, there is no reuptake to

block. To assess these potential sources of individual variability in MPH effects, we took into account

two measures that have been demonstrated with PET to relate to dopamine baseline function: work-

ing memory span for its relation to striatal dopamine synthesis capacity (Cools et al., 2008;

Landau et al., 2009) and trait impulsivity for its relation to dopamine (auto)receptor availability

(Buckholtz et al., 2010; Kim et al., 2014; Lee et al., 2009; Reeves et al., 2012), and collected a

large sample (N = 106) to expose individual differences.

Results
Healthy participants performed a motivational Go/NoGo learning task, in which cue valence (Win vs.

Avoid cue) is orthogonalized to the instrumental response (Go vs. NoGo). During this task, subjects

need to learn for each of 8 cues to make a Go or NoGo response, and by making the correct

response subjects are rewarded for Win cues (green edge) and avoid punishment for the Avoid cues

(red edge) in 80% of the time. Crucially, in contrast to task designs in previous studies (Guitart-

Masip et al., 2014a), in this novel paradigm subjects could make either of two Go responses (press

left vs. right) or withhold responding (NoGo; Figure 2A–D). Including two Go response options

enabled us to tease apart general activation/inhibition related to the Pavlovian response bias and

specific action learning related to the instrumental learning bias using computational models and

behavioural analyses.

Motivational Valence affects (in)correct action
Subjects successfully learned this difficult task, in which they needed to identify the correct response

out of 3 options (Go-left/Go-right/NoGo) for eight different cues, as evidenced by increased Go

responding to cues indicating the need to Go vs. NoGo (Required Action: X2(1)=624.3; p<0.001;

Figure 2E,F). In other words, subjects were able to adjust Go responding to the required action. As

expected, cue valence also influenced Go responding (Valence: X2(1)=40.0; p<0.001), reflecting a

motivational bias in responding. Overall subjects made more Go responses for Win than Avoid cues.

The effect of cue valence was highly significant for both Go and NoGo cues (Go cues: X2(1)=37.5,

p<0.001; NoGo cues: X2(1)=13.3, p<0.001), though marginally stronger for the Go cues (Required

Action x Valence: X2(1)=3.1; p=0.076). Because each Go cue was associated with only one correct

Go response, we confirmed that this motivational bias was present for both correct and incorrect Go

responses. Subjects made more Go responses to Win than avoid cues for both correct (Valence:

X2(1)=26.1, p<0.001) and incorrect (Valence: X2(1)=25.6, p<0.001) Go responses. Next, we tested

the hypothesis that this motivational bias arose from a combination of a Pavlovian response bias and

biased instrumental learning (Figure 1A–B).

Computational modelling: disentangling Pavlovian response bias and
instrumental learning bias
We used a computational modelling approach to quantify latent processes that we hypothesised to

underlie the behavioural performance. Specifically, our first aim was to disentangle the contribution
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Figure 2. Motivational Go/NoGo learning task and performance. (A) On each trial, a Win or Avoid cue appears on screen. Subjects can respond during

cue presentation. Response-dependent feedback follows. (B) In total eight cues are presented for which the correct response needs to be learned. (C)

Each cue has only one correct response (Go-left, Go-right, or NoGo), which subjects can learn from the feedback. (D) Feedback is probabilistic. Correct
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(Avoid cues) otherwise. For incorrect responses, these probabilities are reversed. (E) Trial-by-trial proportion of Go responses (±SEM) for Go cues (solid

lines) and NoGo cues (dashed lines), collapsed over Placebo and MPH. Left: All cue types. From the first trial onwards, subjects made more Go

responses to Win vs. Avoid cues (i.e. green lines are above red lines), reflecting the motivational bias. Additionally, subjects clearly learn whether to

make a Go response or not (proportion of Go responses increases for Go cues and decreases for NoGo cues). Right: Go cues only. For the Go cues, a

Go response could be either correct or incorrect. The motivational bias is present in both correct and incorrect Go responses, but incorrect Go
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Proportion Go responses is higher for Go vs. NoGo cues, indicative of task learning. Additionally, subjects made more correct and incorrect Go

responses to Win vs. Avoid cues. Source data of task performance are available in Figure 2—source data 1.

DOI: 10.7554/eLife.22169.004

The following source data and figure supplement are available for figure 2:

Source data 1. Source data for task performance under MPH and placebo.

DOI: 10.7554/eLife.22169.005

Figure supplement 1. Individual traces (black lines) and group average (coloured lines) of correct and incorrect Go responses using a sliding average

of 5 trials.

DOI: 10.7554/eLife.22169.006
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of Pavlovian response biases and instrumental learning biases to the observed valence effect in

behaviour. To this end we extended a simple reinforcement learning model using hierarchical Bayes-

ian parameter estimation. We developed five nested base models (M1, M2, M3a, M3b, M4) with

increasing complexity to assess whether additional parameters explained the observed data better,

while penalizing for increasing complexity.

In all models, the probability of each response is estimated based on computed action weights.

In the simplest model (M1) the action weights are fully determined by the learned action values (Q-

values). Action values are updated with the prediction error, i.e. the deviation of the observed out-

come from the expected outcome (standard ‘delta-rule’ learning; Rescorla and Wagner, 1972). M1

contains two free parameters: a learning rate (e) scaling impact of the prediction-error, and feedback

sensitivity (�) scaling the outcome value. Next, to allow for a non-selective bias in Go responses unre-

lated to valence, a go bias parameter (b) is added to the action weights of Go responses in M2. This

parameter simply captures how likely people are to make a ‘Go’ response overall.

In this task, we explicitly instructed the cue valence, by colouring the edge of each cue, where

green signalled that subjects could win a reward, while red signalled they had to avoid a punishment

(Figure 2A). As a consequence, we observed an effect of the instructed cue valence on Go

responses already from the first trial onwards (Figure 2E), implying a motivational bias before learn-

ing could occur, which is therefore likely Pavlovian in nature. To assess this Pavlovian response bias,

cue values are added to the action weights in M3a. In this model positive (negative) Pavlovian values

increase (decrease) the action weight of Go responses, where p scales the weight of the Pavlovian

values (Cavanagh et al., 2013; Guitart-Masip et al., 2014b; 2012). Thus, the Pavlovian bias param-

eter increases the probability of all Go responses for Win cues and decreases the probability of all

Go responses for Avoid cues.

In M3b we assessed whether a motivational learning bias affects behaviour. Specifically, we

included an instrumental learning bias parameter (k), to assess whether reward is more effective in

reinforcing Go responses than NoGo responses, whereas punishment is less effective in unlearning

NoGo responses than Go responses. This biased learning parameter indexes the degree to which

the specific Go response that elicited a reward would be relatively more likely to be repeated in sub-

sequent trials, resulting in increased instrumental learning of Go responses for reward. Note that

earlier studies used only a single Go response and could thus not dissociate this specific learning vs.

Pavlovian bias account. In addition to this effect on learning from rewards, k indexes the degree to

which punishment is biased to potentiate activity in the NoGo versus Go pathway, thus biasing

unlearning to be more effective after Go responses than after NoGo responses, (i.e., making punish-

ment-based avoidance learning of NoGo responses more difficult than punishment-based avoidance

learning of Go responses; Figure 1B). Because the Pavlovian and instrumental learning bias might

explain similar variance in the data, we tested model M4, where we included both p and k to test

whether there was evidence for the independent presence of both the instrumental learning bias

and the Pavlovian response bias.

Stepwise addition of the go bias (Appendix 5), Pavlovian response bias and instrumental learning

bias parameter improved model fit, as quantified by Watanabe-Akaike Information Criteria (WAIC;

Figure 3; Table 1). The Pavlovian bias parameter estimates (p) of the winning model M4 were posi-

tive across the group (96.4% of posterior distribution >0). The Pavlovian bias estimates were modest

across the group (Figure 3; Table 1), and showed strong individual variability (Figure 3—figure sup-

plement 2; Figure 3—figure supplement 3). This strong inter-individual variability is consistent with

previous reports, e.g. Cavanagh et al. (2013), who show that differences in the strength of the Pav-

lovian bias is inversely predicted by EEG mid-frontal theta activity during incongruent relative to con-

gruent cues, putatively reflecting the ability to suppress this bias on incongruent trials. The further

improvement of model fit due to the instrumental learning bias parameter (M3a vs. M4) provides

clear evidence for the contribution of biased action learning on top of the Pavlovian response bias

described in previous studies. The biased instrumental learning parameter estimates were also posi-

tive across the group (100% of posterior distribution >0). In other words, in the winning model, the

motivational bias, as reflected by an increase in Go responses to Win relative to Avoid cues, is

explained by the presence of both a Pavlovian response bias and biased instrumental learning. Fig-

ure 3 and accompanying Figure supplements illustrate the model predictions and parameter

estimates.
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simplest model M1 contains a feedback sensitivity (r) and learning rate (e) parameter. Stepwise addition of the go bias (b), Pavlovian bias (p;

Figure 1A), and instrumental learning bias (k; Figure 1B) parameter improves model fit, quantified by WAIC (estimated log model evidence). Lower

(i.e. more negative) WAIC indicates better model fit. (B) Temporal dynamics of the correlation between the motivational bias parameters (M4) and the

predicted motivational bias, i.e. probability to make a Go response to Win relative to Avoid cues. The impact of the Pavlovian bias (p) on choice

decreases over time (although, importantly, the parameter itself remains constant). This is because the instrumental values of the actions are learnt and

thus will increasingly diverge. As a result, p is less and less ’able’ to tip the balance in favour of the responses in direction of the motivational bias (i.e. it

can no longer overcome the difference in instrumental action values). In contrast, the impact of k on choice increases over time, reflecting the

cumulative impact of biased learning (also Figure 3—figure supplement 2). (C) Posterior densities of the winning base model M4. Appendix 5 shows

posterior densities for all models. (D) One-step-ahead predictions and posterior predictive model simulations of winning base model M4 (coloured

lines), to assess whether the winning model captures the behavioural data (grey lines). Both absolute model fit methods use the fitted parameters to

compute the choice probabilities according to the model. The one-step-ahead predictions compute probabilities based on the history of each subject’s

actual choices and outcomes, whereas the simulation method generates new choices and outcomes based on the response probabilities (see Materials

and methods for details). Both methods capture the key features of the data, i.e. responses are learnt (more ’Go’ responding for ’Go’ cues relative to

’NoGo’ cues) and a motivational bias (more Go responding for Win relative to Avoid cues). We note that the model somewhat underestimates the

initial Pavlovian bias (i.e. difference in Go responding between Win and Avoid trials is, particularly trial 1–2), while it overestimates the Pavlovian bias on

later trials. This is likely the result from the fact that while the modelled Pavlovian bias parameter (p) is constant over time, the impact of the Pavlovian

stimulus values weakens over time, as the subjects’ confidence in the instrumental action values increases. Interestingly, notwithstanding the constancy

of the Pavlovian bias parameter, we do capture some of these dynamics as Figure 3B shows that the impact of the Pavlovian bias on choice decreases

over time. Source data of M4 simulated task performance are available in Figure 3—source data 1.

DOI: 10.7554/eLife.22169.007

The following source data and figure supplements are available for figure 3:

Figure 3 continued on next page
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MPH enhances effect of cue valence proportional to working memory
span
Next, we asked whether acute administration of MPH altered the motivational bias. As noted above,

the effects of dopaminergic drugs often depend on baseline dopamine function. We therefore used

two neuropsychological measures that have been shown to predict baseline dopamine function

using PET: working memory span, predictive of baseline dopamine synthesis capacity (Cools et al.,

2008; Landau et al., 2009), and trait impulsivity, predictive of D2 autoreceptor availability

(Buckholtz et al., 2010; Kim et al., 2014; Lee et al., 2009; Reeves et al., 2012). Importantly, both

working memory span and trait impulsivity predict dopaminergic drugs effects on various cognitive

functions (Clatworthy et al., 2009; Cools et al., 2009; 2007; Frank and O’Reilly, 2006; Gibbs and

D’Esposito, 2005; Kimberg et al., 1997; Zimet et al., 1988).

MPH enhanced the effect of cue valence on Go responding proportional to working memory

span (Valence x Drug x Listening Span: X2(1)=5.9; p=0.016; Figure 4B), in the absence of a Valence

x Drug effect across the group (Valence x Drug: X2(1)=1.5; p=0.221; Figure 4A). While high-span

subjects showed a drug-induced increase in motivational bias (MPH versus placebo increased Go

responding to Win vs. Avoid cues), low-span subjects showed a drug-induced decrease in motiva-

tional bias. This span-dependent bias emerged under MPH (X2(1)=4.6, p=0.032), and was not signifi-

cant under placebo (X2(1)=0.9, p=0.335; Figure 4—figure supplement 1).

A break-down of this effect into correct and incorrect responses revealed that it was driven by

incorrect Go responses (Valence x Drug x Listening Span: X2(1)=11.9, p<0.001; Figure 4C). MPH did

not significantly affect the correct Go responses (Valence x Drug x Listening Span: X2(1)=2.0,

p=0.152). In other words, higher span subjects were more likely to make Go responses to Win cues

under MPH, but this Go response was more likely to be incorrect. We reasoned that an enhanced

learning bias would manifest primarily in increased correct Go responses to Win cues (i.e. the correct

responses are better learned), while an enhanced Pavlovian bias or diffusion of credit assignment

would manifest in increased correct and incorrect Go responses to Win cues (due to overall action

invigoration and potentiation respectively). Thus, we expected that the altered valence effect on

Figure 3 continued

Source data 1. Source data for model M4 simulated task performance.

DOI: 10.7554/eLife.22169.008

Figure supplement 1. Subject traces of model M4 (green/red) overlaid on observed behavior (black).

DOI: 10.7554/eLife.22169.009

Figure supplement 2. Illustration of the behavioural effects associated with the Pavlovian bias and instrumental learning bias parameters.

DOI: 10.7554/eLife.22169.010

Figure supplement 3. M4 subject-level parameters in model space (i.e. untransformed).

DOI: 10.7554/eLife.22169.011

Table 1. Base models. Median [25–75 percentile] of subject-level parameter estimates in model space. See Appendix 5 for subject-

level / top-level parameters in sampling space (i.e. untransformed). Absolute WAIC is reported at the top as the estimate of model evi-

dence, where a smaller WAIC indicates higher evidence.

Base models

M1 M2 M3a M3b M4

WAIC 71014 69038 67678 67602 66987

r 42.7 [19.3 79.8] 41.6 [18.7 72.4] 35.2 [15.8 66.4] 33.4 [13.9 59.8] 32.5 [14.9 56.4]

e0 0.013 [0.008 0.059] 0.015 [0.008 0.054] 0.017 [0.009 0.064] 0.022 [0.010 0.070] 0.021 [0.010 0.063]

b �0.25 [�0.45 0.04] �0.25 [�0.46 0.04] .01 [�0.33 0.27] �0.03 [�0.29 0.19]

p 0.47 [0.02 1.00] 0.12 [�0.29 0.70]

e rewarded Go(e0+k) 0.037 [0.016 0.122] 0.034 [0.016 0.109]

e punished NoGo(e0-k) 0.006 [0.002 0.014] 0.008 [0.003 0.022]

DOI: 10.7554/eLife.22169.012
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incorrect Go responses under MPH can best be attributed to MPH alteration of Pavlovian response

bias or diffusion of credit assignment, which we formally test using computational modelling (see

below).

In contrast to listening span, trait impulsivity did not significantly predict the effect of MPH on the

motivational bias (all p>0.05; see Appendix 3 for an overview of the mixed model effects). We con-

firmed that the MPH effects were not explained by session effects, i.e. whether MPH was received

on the first or second testing day (X2(2)=2.1, p=0.349), nor did the factor Testing day improve model

fit (X2(1)=2.0, p=0.162). Finally, we confirmed that including nuisance variables Gender and NLV

scores (measuring verbal intelligence), did not improve model fit either (X2(2)=0.4, p=0.815).

Computational modelling: dissociable effects of MPH on pavlovian
response bias and biased instrumental learning
Continuing our modelling approach, we next assessed whether the MPH-induced motivational bias

could be attributed to an altered Pavlovian response bias and/or instrumental learning bias. To this

end we extended the winning base model M4 into competing models. In M5a we included an MPH-

induced Pavlovian bias parameter (pMPH), to assess whether MPH altered the Pavlovian response

bias. Here pMPH alters the individual’s Pavlovian bias parameter under MPH. In M5b we included an

MPH-induced instrumental learning bias (kMPH-selective). Thus, M5b tests whether MPH affects the

strength of the instrumental learning bias in individuals. We further tested whether MPH might make

the learning bias more diffuse, because of its mechanisms of action. Because MPH blocks reuptake,

it prolongs dopamine release, such that reinforcement and synaptic potentiation might not be attrib-

uted only to the temporally coincident neurons that code for the recently selected action, but could

be spread to other actions (diffuse learning). To test this hypothesis, M5c contains a MPH-induced

diffuse learning bias (kMPH-diffuse), where kMPH-diffuse is a learning rate that alters the value of all Go

responses following a reward, under MPH (Figure 1C) by scaling the prediction error following all

rewarded Go responses.

Model fit improved markedly when extending the winning base model M4 with the MPH-induced

Pavlovian bias parameter pMPH (M5a; Figure 5; Table 2). Extending M4 with the MPH-induced selec-

tive learning bias parameter kMPH-selective (M5b) only slightly increased model fit. Conversely, the

MPH-induced diffuse learning bias parameter kMPH-diffuse (M5c) also strongly improved model fit

Working memory

(Listening Span)

p
(G

o
 |
 W

in
) 

- 
p

(G
o

 |
 A

v
o

id
)

−0.6

−0.3

0.0

0.3

0.6

3 4 5 6 7

MPH - Placebo

B. MPH effect predicted by WM span

Working memory

(Listening Span)

MPH - Placebo

p = .016 p < .001Go NoGop
(G

o
 |
 M

P
H

) 
- 

p
(G

o
 |
 P

L
A

)

-.05

0

.05

A. MPH effect on 

motivational bias

Win (correct/incorrect)
Avoid (correct/incorrect)

Required response

ns ns
ns

C. Incorrect Go

p
(G

o
 |
 W

in
) 

- 
p

(G
o

 |
 A

v
o

id
)

3 4 5 6 7

-0.2

-0.1

0.0

0.1

0.2

Figure 4. MPH-induced changes in motivational bias (i.e. proportion of Go responses to Win relative to Avoid cues). (A) Mean (±SED) proportion Go

responses under MPH relative to Placebo. MPH did not significantly alter the motivational bias across the group (p=0.22; ns indicates p>0.05). (B) MPH

increased the motivational bias in high span subjects, yet decreased it in low span subjects (R = 0.21; p=0.016). (C) MPH altered the motivational bias

particularly for incorrect Go proportional to working memory span (incorrect Go: p<0.001; correct Go: p=0.152).

DOI: 10.7554/eLife.22169.013

The following figure supplement is available for figure 4:

Figure supplement 1. Simple effects of MPH-induced changes in motivational bias.

DOI: 10.7554/eLife.22169.014
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relative to base model M4. This observation is in line with our earlier prediction that the MPH effects

are predominantly driven by changes in the proportion of incorrect Go responses. Confirming the

model comparison results, the MPH modulation of Pavlovian bias and diffuse learning parameters

both covaried with Listening Span (pMPH: R = 0.25, p=0.013; kMPH-diffuse: R = 0.28, p=0.006), while

the MPH selective learning bias did not (kMPH-selective: R = �0.01, p=0.9). In other words, kMPH-selective

did not explain our effect of interest and improved model fit relatively weakly.
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Figure 5. Model evidence and parameter inference of extended MPH models. (A) Model evidence (WAIC) relative to winning base model M4. We

tested whether MPH alters the strength of the Pavlovian response bias (pMPH; M5a), the instrumental learning bias (kMPH-selective; M5b), or has a diffuse

effect on the learning bias (kMPH-diffuse; M5c; Figure 1C). Model selection favoured the composite model M6, including the pMPH and kMPH-diffuse

parameters. (B) Posterior densities of the top-level parameters of M6. (C) Subject-level estimates of MPH-induced Pavlovian bias parameter (upper) and

the MPH-induced diffuse learning bias parameter (lower; logistic scale) correlated significantly with Listening Span. (D) One-step-ahead model

predictions and posterior predictive model simulations of M6 using subject-level parameter estimates. The model predictions and simulations echo the

observed data, i.e. that the motivational bias correlates positively with working memory span (Figure 4B), confirming the winning model M6 captures

the MPH-induced increase in Go responses to Win vs. Avoid cues.

DOI: 10.7554/eLife.22169.015

The following figure supplements are available for figure 5:

Figure supplement 1. Illustration of the behavioural effects of MPH related to the Pavlovian bias and diffuse learning bias parameters.

DOI: 10.7554/eLife.22169.016

Figure supplement 2. M6 subject-level parameters in model space (i.e. untransformed).

DOI: 10.7554/eLife.22169.017
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To assess whether pMPH and kMPH-diffuse explained unique Listening Span-dependent effects of

MPH (i.e. whether there was evidence for both of these effects), we constructed a composite model

(M6) containing both effects. Model comparison showed that indeed this composite model

explained the data best (Figure 5). In this model, both parameters again significantly varied propor-

tional to Listening Span (pMPH: R = 0.24, p=0.020; kMPH-diffuse: R = 0.22, p=0.032; Figure 5).

Taken together, these modelling results attribute the MPH-induced motivational bias partly to an

altered Pavlovian response bias (pMPH), and partly to a reward-driven diffusion of credit during instru-

mental learning (kMPH-diffuse). In other words, MPH (i) alters the impact of cue valence on action,

which is present and persists from the first trial onward, and (ii) alters the impact of rewarding out-

comes on the learning of actions, which fully depends on and evolves with experience. Following a

reward, the effect of kMPH-diffuse is to increase the value of incorrect Go responses in addition to the

correct Go response.

Finally, we tested whether our best fitting model was sufficient to reproduce the key features of

the data. This is important because model selection only provides relative, but not absolute evidence

for the winning model (e.g., Nassar and Frank, 2016). We used two approaches to compute the

post hoc absolute model fit, namely data simulation and ‘one-step-ahead’ model predictions. In the

simulation method, the first choice is simulated based on the initial values; the corresponding out-

come used for learning; the next choice is simulated based on the updated, learned values; and so

on. Thus, this simulation method ignores any subject-specific sequential/history effects to determine

the current choice probability. Therefore, this can result in choice/outcome sequences that diverge

completely from the subjects’ actual experiences. Violating the subject-specific choice and outcome

history will change the learning effects, making this method less robust in generating the exact learn-

ing effects compared to experience-independent effects. We therefore included a second absolute

model fit method that does take into account the subjects’ choice and outcome histories: the post-

hoc absolute fit method (also known as ‘one-step-ahead prediction’; Pedersen et al., 2016;

Steingroever and Wagenmakers, 2014). Here, the initial choice probabilities are determined based

on the initial values. For each subsequent trial, the choice probabilities are determined based on the

learned values using the actual (subject’s) choices and outcomes on all preceding trials. We used

both methods as the strongest test providing converging evidence that the models could capture

the observed results.

Using both absolute model fit methods, we simulated choices for each individual, using model

M6 with each individual’s parameter estimates. Both methods confirmed that M6 can capture the

observed effects, replicating the Listening Span dependent effect of MPH on choice, where MPH

increased Go responses to Win vs. Avoid cues more in higher span subjects (simulations: R = 0.27,

Table 2. MPH models. Median [25–75 percentile] of subject-level parameter estimates in model space. Absolute WAIC is reported as

the estimate of model evidence, where a smaller WAIC indicates higher evidence. Biased instrumental learning rate for rewarded Go

and punished NoGo responses as computed by e0±k under placebo and by e0±(k+kMPH) under MPH. (MPH) indicates the value of that

parameter under MPH.

Extended MPH models

M5a M5b M5c M6

WAIC 66383 66883 66595 66069

r 31.2 [14.7 53.6] 31.6 [15.6 57.0] 55.8 [19.6 104.8] 51.9 [20.6 98.7]

e0 0.022 [0.010 0.067] 0.021 [0.011 0.061] 0.011 [0.006 0.051] 0.012 [0.006 0.055]

b �0.04 [�0.33 0.18] �0.05 [�0.34] �0.10 [�0.37 0.13] �0.14 [�0.42 0.10]

p
p (MPH)

0.27 [�0.50. 71]
0.20 [�0.38. 71]

0.15 [�0.28. 70] 0.05 [�0.46. 61] 0.27 [�0.47. 74]
�0.05 [�0.70. 50]

e rewarded Go

e rewarded Go (MPH)
0.037 [.017. 116] 0.030 [.018. 103]

0.031 [.016. 104]
0.018 [.009. 082] 0.019 [.009. 085]

e punished NoGo

e punished NoGo (MPH)
0.009 [.004. 030] 0.009 [.003. 021]

0.008 [.002. 021]
0.004 [.002. 013] 0.005 [.002. 017]

e diffuse (MPH) 0.002 [.002. 004] 0.003 [.002. 004]

DOI: 10.7554/eLife.22169.018
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p=0.008; one-step-ahead: R = 0.20, p=0.050; Figure 5). These simulations echo the results reported

above, demonstrating the MPH-induced Pavlovian bias parameter pMPH and diffuse learning bias

kMPH-diffuse are sufficient to both explain and predict the span-dependent MPH-induced increase in

Go responses to Win vs. Avoid cues. Figure 5 and accompanying Figure supplements illustrate the

model predictions and parameter estimates.

Discussion
Motivational biases of behaviour are well established: Reward biases towards action, punishment

towards inaction. In this study, we had two goals. First, we aimed to assess whether these motiva-

tional biases arise from biases in instrumental learning in addition to Pavlovian response biases. Sec-

ond, given the strong link between catecholamine transmission and motivated action, we aimed to

assess effect of catecholaminergic manipulation on these biases. To this end, a large sample of par-

ticipants (N = 106) performed a novel motivational Go/NoGo learning task twice, once under a cate-

cholamine challenge (methylphenidate - MPH) and once on placebo. Based on previous literature of

dopaminergic drug effects (Cools and D’Esposito, 2011; Frank and Fossella, 2011 for reviews), we

hypothesized that MPH effects on motivated action would covary with measures scaling with base-

line dopamine function, namely working memory span (Cools et al., 2008) and trait impulsivity

(Buckholtz et al., 2010). Our findings are threefold: First, cue valence elicits behavioural activation

in a Pavlovian manner, whereas outcome valence biases the learning of action vs. inhibition

(Figure 1A,B). Second, MPH modulates Pavlovian biasing, while also altering the reward-driven dif-

fusion of credit assignment during instrumental learning. Third, the direction of the effect of MPH

covaries with individual differences in working memory span, but not trait impulsivity.

Dissociable effects of cue and outcome valence on behavioural
activation and instrumental learning
Cue valence affected activation versus inhibition of behaviour, consistent with previous reports

(Geurts et al., 2013; Guitart-Masip et al., 2012). Even though cue valence was orthogonal to what

subjects should be doing, subjects made more Go responses when pursuing reward, and fewer Go

responses when trying to avoid punishment. We and others have previously suggested that this

motivational asymmetry in behavioural activation entails Pavlovian control over instrumental behav-

iour (Cavanagh et al., 2013; Geurts et al., 2013; Huys et al., 2011). Here we challenge this initial

idea, and argue that motivational valence may also bias instrumental learning. To disentangle the

hypothesised contribution of a Pavlovian response bias from biased instrumental learning, we

extended existing paradigms by incorporating multiple Go response options. For the cues requiring

active responses, only one response option was considered correct, enabling us to disentangle gen-

eral activation from specific action learning. For cues where subjects had to activate responding

(‘Go’ cues), they increased both correct and incorrect Go responses when pursuing reward com-

pared with when avoiding punishment. Thus, the increased activation towards reward was in part

beneficial, and in part detrimental.

We used computational models to formalise our hypothesis regarding a dissociable contribution

of Pavlovian activation and biased instrumental learning. We then fitted competing models to the

subjects’ choices, and compared the performance of all models. We demonstrate that cue valence

shapes behavioural activation/inhibition in a Pavlovian manner, and additionally that outcome

valence biases instrumental learning of activation/inhibition: reward enhances the learning of specific

active actions, and punishment suppresses the unlearning of inactions. In short, we are quicker to

believe that an action led to a reward, but reluctant to attribute a punishment to having held back.

Current views of striatal dopamine function (Collins and Frank, 2015; 2014; Frank, 2006;

Frank, 2005; Lloyd and Dayan, 2016) suggest that the striatal architecture is well suited to imple-

ment the Pavlovian asymmetry in behavioural activation. Appetitive (aversive) conditioned cues elicit

peaks (dips) in mesolimbic dopamine release in the striatum (Cohen et al., 2012; Day et al., 2007;

Matsumoto and Hikosaka, 2009; Tobler et al., 2005). Increased striatal dopamine levels activate

the direct D1 (‘Go’) pathway (Hernández-López et al., 1997), which promotes behavioural activation

(DeLong and Wichmann, 2007; Mink and Thach, 1991), whereas decreased striatal dopamine lev-

els activate the indirect D2 (‘NoGo’) pathway (Hernandez-Lopez et al., 2000), promoting behaviou-

ral inhibition. In striatal dopamine models, increased dopamine biases action selection to be driven
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more by the potential rewards of alternative actions encoded in D1 neurons and less by the costs

encoded in D2 neurons (Collins and Frank, 2014; see also recent optogenetic experiment support-

ing this notion; Zalocusky et al., 2016), but this can also be manifest in terms of Pavlovian biases.

Taken together, the striatal (in)direct pathways provide a neural mechanism for implementing Pav-

lovian activation to appetitive vs. aversive cues.

In parallel with our behavioural findings, the same striatal pathways may also generate the asym-

metry in action learning. Here, dopamine bursts elicited by reward prediction errors

(Montague et al., 2004; Schultz et al., 1998; Schultz et al., 1997) during the outcome, enhance

long-term potentiation (LTP) of the corticostriatal synapses associated with the just-performed

response (Frank et al., 2004). Importantly, enhancing LTP in the ‘Go’ pathway should promote

learning of active responses, relative to learning the inhibition of actions. Recent experiments show

temporally and spatially selective enhancement of corticostriatal spines given glutamatergic input

(putatively representing the selected action) and followed closely in time by dopaminergic bursts

(Yagishita et al., 2014). Thus, prolonged release of DA (e.g. after DAT blockade) might reduce this

selectivity, and diffuse the specificity of credit assignment. Conversely, striatal dopamine dips follow-

ing negative prediction errors can drive avoidance by promoting long-term depression (LTD) in the

‘Go’ pathway and LTP in the ‘NoGo’ pathway (Beeler et al., 2012; Frank, 2005; Shen et al., 2008).

Indeed, transient optogenetic inhibition of DA induces behavioural avoidance of recently selected

actions (Danjo et al., 2014; Hamid et al., 2016), an effect that depends on D2 receptors

(Danjo et al., 2014). D2 neurons are excited in response to losses (Zalocusky et al., 2016); their

activation during losses induces subsequent avoidance learning (Kravitz et al., 2012;

Zalocusky et al., 2016), and their disruption prevents avoidance learning (Hikida et al., 2010).

While LTP in the NoGo pathway would be beneficial for unlearning to perform actions, LTP in the

NoGo pathway would be detrimental in case of unlearning to make NoGo responses (i.e. attributing

a punishment to a NoGo response). To summarize, the dopamine peaks following positive reinforce-

ment can enhance learning of actions by enhancing LTP in the striatal ‘Go’ pathway. Conversely, the

dopamine dips following negative outcomes can disrupt learning to initiate responses by increasing

LTD in the ‘Go’ pathway and LTP in the NoGo pathway.

Methylphenidate modulates Pavlovian activation and spreads credit
assignment of rewarded actions
Blocking the reuptake of catecholamines with MPH altered the extent to which subjects were influ-

enced by the cue and outcome valence. This effect of MPH was highly variable between individuals,

and depended on working memory span. In high relative to low span subjects, MPH enhanced the

influence of valence, such that subjects made even more active responses when pursuing reward

and displayed more inhibition when avoiding punishment. This effect was driven particularly by

changes in the proportion of incorrect Go responses that subjects made. Formal modelling showed

that this effect was due to MPH affecting both generalized Pavlovian activation and a diffusion of

credit assignment. Specifically, MPH induced a spread of credit assignment following rewarded

active responses, rather than magnifying the selective instrumental learning bias.

We argue that both of these effects can be understood as reflecting prolonged catecholamine

presence in the synaptic cleft with MPH. Blocking catecholamine reuptake with MPH extends the

duration of dopamine presence in the synaptic cleft (Dreyer and Hounsgaard, 2013). This pro-

longed dopamine presence (i.e. reduced temporal specificity) would be less selective in potentiating

the actions that were selected immediately prior to rewards (e.g. Yagishita et al., 2014). This would

reduce credit assignment of specific active actions, but still bias reinforcement of actions more gen-

erally (e.g. Collins and Frank, 2015; Syed et al., 2016). This account explains why MPH modulates

the strength of the Pavlovian activation (which is inherently global) but not of the specific instrumen-

tal learning bias (which is inherently selective). Our results indeed provided evidence for this diffus-

ing effect of MPH on the instrumental learning bias, such that reward potentiates actions globally.

The data were best explained by a combination of this diffuse instrumental learning and Pavlovian

response bias modulation. Thus, on the one hand MPH modulated the impact of the cue valence on

behavioural activation, which surfaces already before any learning has taken place. On the other

hand, MPH spread credit assignment following rewarded responses to all Go responses, which is an

experience-dependent effect.
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Our results are highly consistent with those predicted from current models of dopamine in the

basal ganglia, suggesting that the effects of MPH are due to modulation of striatal dopamine. Of

course, the present study does not allow us to exclude the possibility that (part of) the effects were

mediated by extra-striatal, e.g. prefrontal regions (Spencer et al., 2015), or by the noradrenaline

system (Arnsten and Dudley, 2005). Future studies are needed to investigate directly the site of the

presently observed effects of MPH, e.g. with fMRI, and dopamine dependence and selectivity, e.g.

with selective dopamine antagonists.

MPH effects predicted by individual differences in working memory
span
Individuals vary strongly in the extent to which MPH increases extracellular dopamine

(Volkow et al., 2002). We therefore anticipated that the effect of MPH would covary with measures

relating to baseline dopamine function. We assessed whether MPH effects were predicted by (i)

working memory span, given its known relation to dopamine synthesis capacity (Cools et al., 2008;

Landau et al., 2009), and (ii) trait impulsivity, for its known relation to D2 (auto)receptor availability

(Buckholtz et al., 2010; Kim et al., 2014; Lee et al., 2009; Reeves et al., 2012). MPH affected

choice behaviour proportional to working memory span, but not trait impulsivity. Subjects with

higher working memory span, linked to higher striatal synthesis capacity, showed a relative increase

in both Pavlovian response bias and spread of credit assignment under MPH. This finding that trans-

porter blockade has stronger effects in those individuals with putatively higher baseline dopamine is

in line with the observation that MPH increases dopamine levels more in individuals with higher

dopamine cell activity (van der Schaaf et al., 2013; Volkow et al., 2002). Indeed, baseline dopa-

mine cell activity is a better predictor of effects of MPH than either D2 auto-receptor availability or

DAT occupancy under MPH (Volkow et al., 2002). Together this may explain why the observed

MPH effects covary with working memory span but not trait impulsivity.

The finding that drug effects depend on working memory is highly consistent with the hypothesis

that they reflect modulation of striatal dopamine (c.f. Frank and Fossella, 2011). However, we need

to be cautious in our interpretation. First, both striatal and prefrontal dopamine are known to con-

tribute to working memory performance (updating and maintenance respectively; e.g. Cools and

D’Esposito, 2011). The Listening Span task does not dissociate between working memory updating

and maintenance, and thus a contribution of modulation of prefrontal dopamine cannot be

excluded. Another possibility raised by the finding that drug effects depend on span, is that they

reflect modulation of working memory itself, rather than reflecting dependence on baseline dopa-

mine synthesis capacity. However, we argue that this is unlikely, because there was no significant

effect of baseline working memory on motivational bias under placebo conditions. Rather, this rela-

tionship was induced by MPH. For future studies, it would be of interest to also include other meas-

ures related to baseline dopamine levels, such as eyeblink rates. More broadly, further research is

required to identify the optimal combination of the various proxy measures of individual variability in

the dopamine system in order to account for the large inter-individual variability in dopaminergic

drug response. This is one of the major aims of our ongoing work.

Across subjects, MPH increased subjective experiences of positive affect and alertness, and

decreased calmness (Appendix 2). In contrast to the MPH-induced Pavlovian response bias and dif-

fuse learning bias, these non-specific mood changes did not covary with working memory span. In

other words, the MPH-induced mood changes are orthogonal to our effect of interest. Therefore,

the MPH effect on Pavlovian activation and biased instrumental learning cannot be attributed to

MPH-induced changes in mood.

Conclusion
This study elucidates two distinct mechanisms by which motivational valence can bias behaviour.

Cue valence promotes activation/inhibition in a Pavlovian manner, whereas outcome valence affects

action/inhibition learning. Blocking the reuptake of catecholamines with methylphenidate altered the

Pavlovian response bias, and had a diffuse, rather than selective, effect on biased learning. The

effect of methylphenidate on the Pavlovian bias and biased learning was predicted by working mem-

ory span, such that methylphenidate enhanced Pavlovian activation and biased learning proportional
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to working memory span. These results help bridge the study of motivational biasing of action and

instrumental learning, and help refine current models of catecholamines in motivated action.

The present observations suggest that we need to add a new dimension to the suggested dichot-

omy of the role of dopamine in learning versus performance. Our study brings together two litera-

tures that emphasise the role of (midbrain) dopamine in reward (prediction-error) based learning on

the one hand (Collins and Frank, 2014; Frank et al., 2004; Schultz et al., 1997), and motivation-

driven performance and behavioural activation on the other (Beierholm et al., 2013; Berridge, 2007;

Robbins and Everitt, 2007; Shiner et al., 2012; Smittenaar et al., 2012). Our results suggest that

these two interact, resulting in biased learning of action-reward and inaction-punishment links, puta-

tively via the same striatal mechanism that drive motivational Pavlovian response biases. Like motiva-

tional response tendencies, such biased learning would allow us to optimally profit from stable

environmental statistics, as this instrumental learning bias supports rapid learning of likely action-out-

come associations (e.g. that an action caused a reward), while avoiding learning unlikely, spurious,

associations (e.g. that inhibition caused a punishment).

Materials and methods

General procedure and pharmacological manipulation
The study consisted of two test sessions with an interval of one week to two months. The first test

day started with informed consent, followed by a medical screening. Participation was discontinued

if subjects met any of the exclusion criteria (Appendix 1). On both test days, subjects first completed

baseline measures. Next subjects received a capsule containing either 20 mg MPH (Ritalin, Novartis)

or placebo, in a double-blind, placebo-controlled, cross-over design. MPH blocks the dopamine and

noradrenaline transporters, thereby diminishing the reuptake of catecholamines. When administered

orally, MPH has a maximal plasma concentration after 2 hr and a plasma half-life of 2–3 hr

(Kimko et al., 1999). After an interval of 50 min, subjects started with the task battery containing

the motivational Go/NoGo learning task. See Appendix 2 for an overview of the task battery. On

average the motivational Go/NoGo learning task was performed 2 hr after capsule intake, well within

the peak of plasma concentration. Both test days lasted approximately 4.5 hr, which subjects started

at the same time (maximum difference of 45 min). Blood pressure, mood and potential medical

symptoms were monitored three times each day: before capsule intake, upon start of the task bat-

tery and after finishing the task battery. Subjects were told to abstain from alcohol and recreational

drugs 24 hr prior to testing and from smoking and drinking coffee on the days of testing. Subjects

completed self-report questionnaires at home between (but not on) test days. Upon completion of

the study, subjects received a monetary reimbursement or study credits for participation. The study

was in line with the local ethical guidelines approved by the local ethics committee (CMO / METC

Arnhem Nijmegen: protocol NL47166.091.13), pre-registered (trial register NTR4653, http://www.tri-

alregister.nl/trialreg/admin/rctview.asp?TC=4653), and in accordance with the Helsinki Declaration

of 1975. Baseline measures, self-report questionnaires, mood- and medical symptom-ratings are

reported in Appendix 2.

Subjects
As individual differences were a main focus of the study, we collected a large sample of 106 native

Dutch volunteers (aged 18–28 years, mean (SD) = 21.5 (2.3); 53 women; 84 right-handed; sample

size calculation reported in CMO protocol NL47166.091.13). Four subjects dropped out after the

first test day (due to too much delay between test days, loss of motivation, nausea, and mild arrhyth-

mia). Two subjects dissolved the capsules before swallowing and are discarded because of uncer-

tainty in the pharmacodynamics. One subject did not sufficiently engage in the task (only 13/2% Go

responses on day 1/2) and was discarded as well. We repeated the analyses with these subjects

included to confirm that this did not alter the conclusions (Appendix 3). Of the resulting 99 subjects,

48 subjects received MPH on the first day. Exclusion criteria comprised a history of psychiatric, neu-

rological or endocrine disorders. Appendix 1 presents a complete overview of the exclusion criteria.

Swart et al. eLife 2017;6:e22169. DOI: 10.7554/eLife.22169 16 of 36

Research article Neuroscience

http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4653
http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4653
http://dx.doi.org/10.7554/eLife.22169


Motivational Go/NoGo learning task
Each trial started with the on-screen presentation of a cue (Figure 2A). During cue presentation sub-

jects could decide to press a button (Go response) or not (NoGo response). Subjects could either

press the left (Go-left) or right (Go-right) button on a button box. Subjects received feedback based

on their response.

Each cue had a red or green edge. Cues with a red edge (Avoid cues) were followed by neutral

feedback or punishment. Cues with a green edge (Win cues) were followed by reward or neutral

feedback. Subjects were informed about these contingencies. Note that the explicit cue valence is in

contrast to previous studies where subjects needed to learn the cue valence during the task (e.g.

Cavanagh et al., 2013; Guitart-Masip et al., 2012). The rationale of explicit cue valence was to

directly observe effects of cue valence on choice and minimize individual differences in learning the

cue valence. Punishment consisted of the display of the red text ‘�100’, accompanied by a low buzz,

reward of the green text ‘+100’ together with a flourish sound, and the neutral feedback of the grey

text ‘000’ together with a short beep. All cues had unique shapes and colours well distinguishable

from the red and green edge. Cue colour and shape were randomized over cue types. Two separate

stimulus sets were used for the two test days to prevent transfer effects, and set order was counter-

balanced across subjects.

For each cue, there was one correct response (Go-left, Go-right or NoGo; Figure 2C), which sub-

jects had to learn by trial and error. Feedback validity was 80%, that is, correct (incorrect) responses

were followed by the desirable outcome 80% (20%) of the time (Figure 2D). There were eight cues

in total (Figure 2B). The number of Go and NoGo cues was kept equal to prevent reinforcing an

overall Go bias.

The order of cue presentation was pseudorandom, as cues could be repeated once at most. Each

cue was presented 40 times. The task lasted approximately 30 min, including instructions and a self-

paced break halfway. The instructions were presented on screen. Subjects were informed about the

probabilistic nature of the feedback and that each cue had one optimal response. At the end of the

task the total number of points won or lost was displayed on screen and subjects were informed

beforehand that these points would be converted to a monetary bonus at the end of the study

(mean = EUR2.90, SD = 1.49).

Listening span test
Working memory span was assessed with the Listening Span Test (Daneman and Carpenter, 1980;

Salthouse and Babcock, 1991), which was also used in two FMT PET studies showing positive corre-

lations with striatal dopamine synthesis capacity (Cools et al., 2008; Landau et al., 2009). Subjects

completed the Listening Span Test on day two prior to capsule intake. The Listening Span Test con-

sists of sets of pre-recorded sentences, increasing from 2 to 7 sentences. Subjects are presented

with the sentences, and required to simultaneously answer written verification questions regarding

the content of each sentence. At the end of each set, subjects recalled the final word of each sen-

tence in the order of presentation. The Listening Span reflects the set size of which the subject cor-

rectly recalled the final words on at least two out of three trials. Listening span increased with half a

point, when only one trial of the next level was correct.

Barratt impulsiveness scale
Trait impulsivity was assessed with the Barratt Impulsiveness Scale (BIS-11) (Patton et al., 1995). The

BIS-11 is a self-report questionnaire, consisting of 30 questions tapping in common (non)impulsive

behaviours and preferences. The BIS-11 total impulsivity scores reflect the tendency towards impul-

sivity. Subjects completed the questionnaire at home between test days.

Statistical analyses
To assess the influence of motivational valence on behavioural activation, we first analysed Go vs.

NoGo responses (irrespective of Go-left vs. Go-right). Second we tested whether effects on Go

responses were explained by correct or incorrect Go responses. We were specifically interested how

MPH altered Go/NoGo responding to Win vs. Avoid cues as a function of Listening Span and

Impulsivity.
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To account for both between and within subject variability, choice data were analysed with logis-

tic mixed-level models using the lme4 package in R (Bates et al., 2014; R Developement Core

Team, 2015). Reflecting our objectives, the mixed models included the within subject factors Drug

(MPH vs. placebo), Valence (Win vs. Avoid cue), and Required Action (Go vs. NoGo), and the

between subject factors Listening Span and Impulsivity. The analysis of correct and incorrect Go

responses included only the Go cues; hence this analysis did not include the factor Required Action.

Models included all main effects and interactions, except for the interactions between Listening

Span and Impulsivity. All models contained a full random effects structure (Barr, 2013; Barr et al.,

2013). We performed control analyses using a model comparison approach, where we tested

whether the following factors improved model fit: Drug Order, Testing Day, Gender, and NLV (a

measure for verbal intelligence). For completeness, we analysed reaction times (RTs) as a measure of

behavioural vigour (Appendix 4).

Computational modelling – Pavlovian response bias and instrumental
learning bias
In all models, action weights (w) are estimated for each response option (a) for all trials (t) per cue

(s). Based on these action weights choice probabilities are computed using a softmax function, as

follows:

p at jstð Þ ¼
exp w at; stð Þð Þ

P

a0 exp w a0; stð Þð Þ

� �

(1)

In the simplest model (M1) the action weights are fully determined by the learned action values

(Q-values). To compute the action values, we used standard delta-rule learning with two free param-

eters; a learning rate (e) scaling the update term, and feedback sensitivity (�) scaling the outcome

value (comparable to the softmax temperature).

Qt at ; stð Þ ¼ Qt�1 at; stð Þþ " �rt � Qt�1 at; stð Þð Þ (2)

Here outcomes are reflected by r, where r2{�1,0,1}. In the current paradigm cue valence is

instructed, by means of the green and red cue edges. Therefore, the initial expected outcome is 0.5

for Win cues and �0.5 for Avoid cues. Initial Q-values (Q0) are set accordingly to �*0.5 for Win cues

and �*�0.5 for Avoid cues.

In M2 a go bias parameter (b) is added to the action weights of Go responses. We then explored

the influence of Pavlovian biases that modulate Go responding according to predicted reward value.

Pavlovian values (V) contribute to the action weights in M3a, increasing (decreasing) the weight of

Go responses for positive (negative) Pavlovian values respectively.

w at; stð Þ ¼
Q at; stð Þþ pV sð Þþ b if a¼Go

Q at; stð Þ else

�

(3)

Here the weight of the Pavlovian values is determined by the parameter p. Pavlovian values are

fixed at 0.5 for Win cues and at �0.5 for Avoid cues, again because cue valence is instructed.

In M3b we included the instrumental learning bias parameter (k) instead of the Pavlovian bias, to

assess whether the motivational bias can be explained in terms of enhanced learning of Go following

a reward, and disrupted learning from punishment following NoGo.

�¼

�0þk if rt ¼ 1 & a¼ go

�0�k if rt ¼�1 & a¼ nogo

�0 else

8

>

<

>

:

(4)

In model M4, we included both the Pavlovian bias parameter and the instrumental learning bias

parameter.

We used a sampling method for hierarchical Bayesian estimation of group-level and subject-level

parameters. The group-level parameters (X) serve as priors for the individual-level parameters (x),

such that x ~ N (X,s). The hyperpriors for s are specified by a half-Cauchy (Gelman, 2006) with a

scale of 2. The hyperpriors for X are centered around 0 (with the exception of X�) and weakly infor-

mative: X� ~ N (2,3), X",k ~ N (0,2), Xb,p ~ N (0,3). All parameters are unconstrained, with the
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exception of � (positivity constraint; exponential transform) and e ([0 1] constraint; inverse logit trans-

form). To ensure that the effect of k on e (Equation 4) was symmetrical in model space (i.e. after sig-

moid transformation to ensure [0 1] constraint), e was computed as:

"¼

"0 ¼ inv:logitð"Þ

"punished NoGo ¼ inv:logitð"�kÞ

"rewarded Go ¼ "0 þ "0 � "punished NoGo

� �

8

>

<

>

:

(5)

Model estimations were performed using Stan software in R (RStan) (Stan Development Team,

2016). Stan provides full Bayesian inference with Markov chain Monte Carlo (MCMC) sampling meth-

ods (Metropolis et al., 1953). The number of Markov chains was set at 4, with 200 burn-in iterations

and 1000 post burn-in iterations per chains (4000 total). Model convergence was considered when

the potential scale reduction factor R̂ < 1.1 for all parameters (Gelman and Rubin, 1992). In case

model convergence was not reached, both (post) burn-in samples were increased to 1500. Not all

models reached convergence at this point. Therefore, we repeated model estimation while exclud-

ing the subjects (N = 5) for whom initially R̂ > 1.1 in any one of the models, resulting in model con-

vergence for all models. We report model evidence including all subjects in Appendix 5, showing

that model selection and parameter inference remains the same when excluding these subjects.

Model comparison was evaluated using the Watanabe-Akaike Information Criteria (WAIC) (Wata-

nabe, 2010). WAIC is an estimate of the likelihood of the data given the model parameters, penal-

ized for the effective number of parameters to adjust for overfitting. Lower (i.e. more negative)

WAIC values indicate better model fit. As WAIC is reported on the deviance scale (Gelman et al.,

2014), a difference in WAIC value of 2–6 is considered positive evidence, 6–10 strong evidence,

and >10 very strong evidence (Kass and Raftery, 1995).

Computational modelling – Effects of methylphenidate
Having established the mechanisms by which motivational valence may affect instrumental learning

and activation, we extended the winning model to test which of these mechanisms are affected by

MPH, putatively driven by a prolonged striatal presence of catecholamines (dopamine) following

reward, due to reuptake inhibition by MPH.

In M5 we tested whether MPH altered the Pavlovian response bias. This model includes a param-

eter allowing for an MPH-induced change in the Pavlovian weight (pMPH):

p¼
p0 if placebo

p0 þpMPH if MPH

�

(6)

Next, we tested two mechanisms by which MPH might alter the bias in instrumental learning (k).

In M5b we tested whether MPH simply enhanced or reduced the learning bias parameter, estimating

an additive effect of kMPH-selective:

k¼
k0 if placebo

k0 þkMPH�selective if MPH

�

(7)

Alternatively, the prolonged presence of catecholamines following reward under MPH could

induce a more diffuse credit assignment, rather than a selective learning bias effect. To test this

hypothesis, in M5c we included a MPH-induced learning bias parameter (kMPH-diffuse), which was

used to update both Go responses, on all trials where any active Go response was followed by

reward, in addition to the regular learning update for the chosen Go response:

if MPH; rt ¼ 1;& achosen ¼Go :

Qt achosenGo;t; st
� �

¼Qt�1 achosenGo;t; st
� �

þð"þk0þkMPH�diffuseÞ �PE

Qt aunchosenGo;t ; st
� �

¼Qt�1 aunchosenGo;t; st
� �

þkMPH�diffuse �PE

(8)

Where PE is the prediction error following the rewarded Go response: PE¼ �rt � Qt�1 at; stð Þ. Thus

where kMPH-selective enhances the learning of the selected Go response after reward, kMPH-diffuse indu-

ces learning of all Go responses when a Go response elicited reward.
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To test whether MPH affected both the Pavlovian response bias and instrumental learning bias,

M6 include pMPH parameter as well as the winning model of the two learning bias mechanisms (M5c

- kMPH-diffuse). For completeness, we report the composite model including the parameters pMPH and

kMPH-selective in Appendix 5. The hyperpriors are again centered around 0 and weakly informative:

X
kmph ~ N (0,2) and X

pmph ~ N (0,3), where only X
kmph-diffuse is constrained ([0 1] constraint; inverse

logit transform).

Having established the winning model, we used two absolute model fit approaches to confirm

that the winning model captures the effects of interest; the post-hoc absolute-fit approach (also

called one-step-ahead prediction) and posterior predictive model simulation approach

(Steingroever and Wagenmakers, 2014). The posterior predictive model simulations simply ’play’

the task, using the estimated parameters. This approach, however, ignores sequential/history effects

of actually observed choices and outcomes. The ’one-step-ahead’ prediction fits parameters to trials

t1 - tn-1, and then predicts the choice on trial tn. Taking these sequential effects into account is partic-

ularly important to assess effects of the parameters that estimate the effect of previous choice/out-

come combinations, i.e. the learning rate parameters, relative to the constant parameters like the

Pavlovian and go biases. For both the one-step-ahead predictions and model simulations, we com-

puted action probabilities for all subjects on all trials using the sampled combinations of all individ-

ual-level parameter estimates. For the one-step-ahead predictions the observed choices and

outcomes were used to update the action probabilities. For the model simulations choices were sim-

ulated depending on the computed action probabilities, and outcomes were determined according

to the ground-truth outcome probabilities (i.e. a correct response would lead to the desired out-

come 80% of the time). Subsequently, outcomes corresponding to the simulated choices were used

to update the action probabilities. The one-step-ahead prediction and simulations were repeated for

all sampled parameter combinations (4000 times), and action probabilities were averaged over repe-

titions. Averaging over repetitions also minimizes effects of randomness due to the stochastic nature

of the choice simulation.
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Appendix 1

Exclusion criteria
Exclusion criteria comprised a history of psychiatric, neurological or endocrine disorders. Further

exclusion criteria were autonomic failure, hepatic, cardiac, obstructive respiratory, renal,

cerebrovascular, metabolic, ocular or pulmonary disease, epilepsy, substance abuse,

suicidality, hyper/hypotension, diabetes, pregnancy/breastfeeding, lactose intolerance,

abnormal hearing or (uncorrected) vision (e.g. colour blindness), irregular sleep/wake

rhythm, regular use of corticosteroids, use of MAO inhibitor, anaesthetic, anti-depressant or

anti-psychotic drugs within the week prior to the start of the study, use of psychotropic

medication or recreational drugs/alcohol 24 hr before each test day, and first degree family

members with schizophrenia, bipolar disorder, ventricular arrhythmia or sudden death.

Inclusion age range was 18–45 years old.
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Appendix 2

Baseline measures and mood ratings
Prior to capsule intake, subjects completed a Dutch reading test (NLV, Schmand et al., 1991) as

a proxy of verbal intelligence on day 1, and the Listening Span Test (Daneman and

Carpenter, 1980; Salthouse and Babcock, 1991) on day 2. Subsequently subjects

completed the Digit Span Test (forward and backward; Wechsler, 2008) and the training

phase of a Pavlovian-Instrumental Transfer task (PIT, Geurts et al., 2013; Huys et al., 2011)

of which data will be reported elsewhere. Between test days, subjects completed a number

of self-report questionnaires. The group that received MPH on day 1 did not differ

significantly on any of the baseline measures from the group that received placebo on day 1

(p<0.05). See Appendix 2—table 1 for an overview of the neuropsychological test scores

and self-report questionnaires.

Appendix 2—table 1. Mean(SD) scores for neuropsychological tests and self-report

questionnaires for the group that received placebo and MPH on day 1. Significance levels for the

between group differences are reported. Self-report questionnaires include the Barratt

Impulsiveness Scale (BIS-11; Patton et al., 1995), the Behavioural Inhibition Scale/Behavioural

Activation Scale (BISBAS; Carver and White, 1994), Need for Cognition Scale (NCS,

Cacioppo et al., 1984), Multidimensional Scale of Perceived Social Support (MSPSS,

Zimet et al., 1988), Barratt Simplified Measure of Social Status (BSMSS, Barratt, 2006), Sociable

and Aggressive Dominance Questionnaire (SADQ, Kalma et al., 1993), Beck Depression

Inventory II (BDI-II; Beck et al., 1996), Spielberger Trait Anxiety Inventory (STAI;

Spielberger et al., 1983).

Group 1
Placebo Day 1

Group 2
MPH Day 1

Neuropsychological tests Listening span 5.0 (0.9) 4.6 (1.2) p=0.16

NLV 94.4 (7.6) 92.6 (7.6) p=0.23

Digit span – forward 17.2 (3.7) 16.2 (3.6) p=0.16

Digit Span - backward 14.7 (3.4) 13.9 (2.7) p=0.22

Self-report questionnaires Impulsivity (BIS-11) 63.5 (8.9) 60.2 (7.9) p=0.052*

Behavioural inhibition (BIS) 16.4 (3.7) 16.3 (3.5) p=0.90

Behavioural activation (BAS) 22.8 (3.9) 23.9 (4.0) p=0.17

Need for cognition (NCS) 64.5 (10.5) 62.2 (10.5) p=0.26

Social support (MSPSS) 71.1 (10.1) 69.3 (9.6) p=0.35

Social status (BSMSS) 49.8 (12.1) 45.9 (12.7) p=0.11

Social dominance (SADQ) 4.1 (0.9) 4.1 (0.8) p=0.82

Aggressive dominance (SADQ) 2.6 (0.6) 2.6 (0.6) p=0.69

Depressive symptoms (BDI-II) 3.5 (3.7) 3.6 (3.9) p=0.97

Anxiety symptoms (STAI) 32.4 (6.6) 32.4 (7.2) p=1.0

*One subject had an outlying score on the BIS-11. Without outlier: p=0.09.
DOI: 10.7554/eLife.22169.020

Mood ratings, heart rate and blood pressure were monitored for safety reasons three

times during each test day, (i) before capsule intake, (ii) upon start task battery, and (iii)

upon completion of the task battery. The mood ratings consisted of the Positive and

Negative Affect Scale (PANAS, Watson et al., 1988) and the Bond and Lader Visual

Analogues Scales (calmness, contentedness, alertness; Bond and Lader, 1974), as well as a

medical Visual Analogues Scale.

We assessed whether MPH affected mood and medical symptoms. For this control analysis

we performed a repeated measures MANOVA using Pillai’s trace with the within subject
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factors Time (baseline/start testing/end testing) and Drug (MPH/placebo), and dependent

variables Positive Affect, Negative Affect, Calmness, Contentedness, Alertness, and

Medical Symptoms. Significant effects were further explored with Bonferonni corrected

repeated measures ANOVA, where alpha = 0.05/6 » 0.008. Greenhouse-Geisser

correction was applied when the assumption of sphericity was not met.

MPH affected these self-report ratings (Time x Drug: V = 0.38, F(12,90) = 4.7, p<0.001), in

the absence of baseline differences between the MPH and placebo groups (V = 0.07, F

(6,96) = 1.1, p=0.359). After capsule intake MPH increased Positive Affect (F(1,101) = 17.5,

p<0.001), Alertness (F(1,101) = 15.2, p<0.001), and Medical Symptoms (F(1,101) = 11.1,

p=0.001), and decreased Calmness (F(1,101) = 8.6, p=0.004), relative to placebo. We

confirmed that the effects of MPH on the self-report ratings did not further interact with

Listening Span and Impulsivity (p>0.05). Thus, the MPH-induced changes in mood and

medical symptoms were orthogonal to the Listening Span dependent MPH effects we

observed in the task.
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Appendix 3

General performance and individual differences in drug
effects on task performance
In the main manuscript, we report the results of 99 (out of 106) subjects. Four subjects did not

complete both test days, two subjects dissolved the capsules before swallowing, and one

subject did not sufficiently engage in the task (only 13/2% Go responses on day 1/2). We

then repeated the analyses with these subjects included to confirm that this did not alter the

conclusions (Appendix 3—figure 1).
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Appendix 3—figure 1. Logistic mixed model estimates of the probability of Go responses to

verify that exclusion of a subset of subjects (7) did not affect our inference. Left: N = 99; Right:

N = 106. Fixed effect estimates and 95% confidence interval (CI) are plotted on probability

scale. Effects are sorted by lower bound of the CI. The results including all 106 subjects

replicate the findings when discarding the subset of subjects (four subjects dropped out

after the first test day, two subjects dissolved the capsules before swallowing, one subject

did not sufficiently engage in the task).

DOI: 10.7554/eLife.22169.021

MPH increased the proportion of Go responses to cues requiring a Go response depending

on working memory span (Required Action x Drug x Listening Span: X2(1)=7.5, p=0.006).

Under MPH, higher span subjects made more Go responses to Go than NoGo cues (MPH:

X2(1)=18.3, p<0.001), while this was not the case under placebo (Placebo: X2(1)=1.2,

p=0.264). This effect of MPH was not significant across the group (independent of span)

either (Required Action x Drug: X2(1)=3.2, p=0.073). Thus, independent of the cue valence,

MPH altered Go/NoGo responding as a function of the optimal action. Again, this effect of

MPH covaried with working memory span, and not trait impulsivity (Appendix 3—figure 1).

High span subjects made more (fewer) Go responses to cues requiring Go (NoGo) responses

under MPH relative to placebo. Low span subjects showed the opposite pattern. These

results could be interpreted as a cognitive enhancing effect of MPH in high span subjects,

but not in low span subjects. This MPH-induced response accuracy is orthogonal to our

effect of interest, and could thus not be attributed to an altered Pavlovian response bias or

instrumental learning bias. Although this MPH effect on response accuracy is interesting in

itself, it was not the focus of the current study, and therefore serves primarily as an invitation
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for future studies to assess the cognitive enhancing effects of MPH on instrumental

responding.
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Appendix 4

Reaction times
For completeness, we analysed reaction times as a measure of behavioural vigour. First, we

confirmed that the expected task effects are present. Second, we assessed whether the

MPH effects on Go responding were accompanied by effects on RT, potentially indicative of

a speed-accuracy trade-off. RT data were log(ln)-transformed to improve normality and

analysed with linear mixed-level models using the lme4 package in R (Bates et al., 2014;

R Developement Core Team, 2015). We assessed RTs of all Go responses, irrespective of

the accuracy of the Go responses, in a model including the within subject factors Drug (MPH

vs. placebo), Valence (Win vs. Avoid cue), and Required Action (Go vs. NoGo), and the

between subject factor Listening Span.

Regarding the expected task effects, subjects were faster when they made Go responses to

Go vs. NoGo cues (Required Action: X2(1)=296.2, p<0.001), indicative of learning (i.e. faster

to correct than incorrect responses). We also observed effects of the motivational bias in

reaction times, where cue valence influenced RTs (Valence: X2(1)=89.5, p<0.001), such that

RTs were shorter to Win vs. Avoid cues. This effect of cue valence was stronger for NoGo

compared to Go cues (Required Action x Valence: X2(1)=11.5, p<0.001), though both were

highly significant (Go: X2(1)=53.7, p<0.001; NoGo: X2(1)=66.6, p<0.001).

Regarding the MPH effects on RT, there was no effect of MPH on the motivational valence

effect on RT (Valence x Drug: X2(1)=0.8, p=0.37), in line with the absence of any MPH main

effect on Go responding. In contrast to Go responding, there were no Listening Span-

dependent effects of MPH on RTs (all p>0.7). The absence of MPH effects on RTs suggests

that the MPH effects reported in the main manuscript are not due to an effect on speed-

accuracy trade-off. Perhaps of interest, but beyond the scope of this article, is that we did

observe span-dependent effects independent of drug treatment. Higher span subjects sped

up more for Win relative to Avoid cues (Valence x Listening Span: X2(1)=4.2, p=0.041), and

for Go relative to NoGo cues (Required Action x Listening Span: X2(1)=5.2, p=0.023). No

other effects were significant (p>0.05).

Swart et al. eLife 2017;6:e22169. DOI: 10.7554/eLife.22169 31 of 36

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.22169


Appendix 5

Computational modelling
In the main article, we report five base models (M1, M2, M3a, M3b, M4) to disentangle the role

of Pavlovian and instrumental learning mechanisms in driving motivational biasing of action.

The winning base model was then extended in three competing models (M5a-c) and a

composite model (M6) to assess the effects of MPH on these mechanisms. Not all models

reached convergence when including all subjects of the behavioural analysis (N = 99). For

five subjects, R̂R exceeded 1.1 in one or more of the models M1/M2/M5a/M6. Therefore, we

repeated model estimation while excluding the five subjects for whom initially R̂R exceeded

1.1 in any one of the models, resulting in model convergence for all models (see main

article). In Appendix 5—figure 1A-E we report the model comparison results and parameter

inference for the models including all subjects, to demonstrate our conclusions do not

depend on the exclusion of these five non-converging subjects.
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Appendix 5—figure 1. Model selection and parameter inference for base models and extended

MPH models including all subjects (N = 99). (A–B) Model selection favours M4 of the base

Swart et al. eLife 2017;6:e22169. DOI: 10.7554/eLife.22169 32 of 36

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.22169


models and M6b of the extended MPH models as reported in the main article. Note that

M6b in this figure corresponds to M6 in the main manuscript. (C-D) Posterior densities of

top-level parameters of the winning base and MPH model, in model space (i.e. transformed).

Only k is presented untransformed (i.e. in sample space), as it is added to e0 prior to

transformation. (E) As reported in the main article, pMPH and kMPH-diffuse of M6b positively

correlate with Listening Span. (F) In the composite model M6a, kMPH-selective correlates

negatively with Listening Span (N = 94; Rho = �0.22, p=0.036), which further supports that

this parameter cannot capture the positive relation between listening span and the effect of

MPH on motivational bias. Note that we report the correlation here for the 94 subjects for

whom the parameters were reliably estimated, i.e. model convergence was reached.

DOI: 10.7554/eLife.22169.022

Note that the go bias estimates of the winning base model M4 did not significantly deviate

from 0 across the group (83% of posterior distribution <0, cut-off is usually considered 90%).

The fact that inclusion of this go bias parameter did improve model evidence suggests large

individual variance. In other words, inclusion of this parameter was important for explaining

the data, but the direction of its effect was variable across subjects. It is noteworthy that the

go bias estimates are on average negative (even if not significantly different from 0), in

contrast to previous studies (Cavanagh et al., 2013; Guitart-Masip et al., 2012). This

discrepancy likely is the result of incorporation of the additional Go response in the current

paradigm, such that chance level of Go responses is 67%, rather than 50%, and so a positive

bias estimate corresponds to a greater than 2/3 proportion of Go responses overall.

Furthermore, in the extended MPH models, both pMPH (M5a) and kMPH-diffuse (M5c) greatly

increased model evidence, in contrast to addition of kMPH-selective (M5b), which only

marginally increased model evidence. Therefore, to assess whether both Pavlovian (pMPH)

and instrumental learning (kMPH-diffuse) effects explained Listening Span-dependent MPH

variance independently (i.e. whether there was evidence for both of these effects), we

constructed a composite model (M6 in main text; M6b in Appendix 5—figure 1) containing

both parameters. For completeness, here we also report the composite model containing

both the pMPH and kMPH-selective parameters (M6a). As expected, model selection favours the

composite model with a spread of credit assignment (kMPH-diffuse, M6b; WAICN=94 = 66069)

over the model that includes a strengthening of the selective instrumental learning bias

(kMPH-selective, M6a; WAICN=94 = 66153). Furthermore, in this model kMPH-selective relates

negatively to Listening Span (R = 0.22, p=0.036; Appendix 5—figure 1F), now that this

model accounts for the MPH-induced Pavlovian bias variance. This negative correlation

cannot explain the positive relation between the relation between working memory span

and the effects of MPH on motivational bias, and as such further corroborates our conclusion

that MPH does not simply increase the strength of the instrumental learning bias as a

function of listening span.

In the main article, we report the subject-level parameter estimates in model space

(Figures 3 and 5). Here we additionally report the untransformed parameter estimates

(Appendix 5—table 1: subject-level, Appendix 5—table 2: top-level) and the confidence of

top-level parameters deviating from 0 for each model (Appendix 5—table 3). In

Appendix 5—figure 2,3 we display the one-step-ahead predictions for the both the winning

and non-winning base and MPH models.

Appendix 5—table 1. Untransformed subject-level parameter means (SD).

Base models Extended MPH models

M1 M2 M3a M3b M4 M5a M5b M5c M6a M6b

r
3.4
(1.2)

3.4
(1.2)

3.3
(1.2)

3.2
(1.1)

3.2
(1.1)

3.2
(1.1)

3.2
(1.1)

3.7
(1.3)

3.2
(1.1)

3.7
(1.3)

e
�3.7
(1.6)

�3.7
(1.5)

�3.6
(1.5)

�3.4
(1.5)

�3.5
(1.4)

�3.4
(1.4)

�3.5
(1.4)

�4.0
(1.7)

�3.4
(1.3)

�4.0
(1.7)

Appendix 5—table 1 continued on next page
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Appendix 5—table 1 continued

Base models Extended MPH models

M1 M2 M3a M3b M4 M5a M5b M5c M6a M6b

b
�0.2
(0.5)

�0.2
(0.5)

�0.04
(0.6)

�0.05
(0.5)

�0.06
(0.5)

�0.07
(0.5)

�0.13
(0.5)

�0.08
(0.5)

�0.15
(0.5)

p
0.5
(0.8)

0.15
(0.7)

0.13
(1.0)

0.18
(0.7)

0.04
(0.7)

0.17
(1.1)

0.16
(0.9)

k
1.7
(1.3)

1.2
(0.8)

1.1
(0.7)

1.1
(0.8)

1.2
(0.8)

1.1
(1.0)

1.0
(0.7)

pMPH
0.08
(1.2)

0.09
(1.5)

�0.19
(1.2)

k MPH-se-

lective

0.09
(0.8)

0.22
(1.1)

k MPH-

diffuse

�5.9
(0.7)

�5.7
(0.5)

DOI: 10.7554/eLife.22169.023

Appendix 5—table 2. Untransformed top-level parameter means (SD).

Base models Extended MPH models

M1 M2 M3a M3b M4 M5a M5b M5c M6a M6b

r
3.4
(0.2)

3.4
(0.2)

3.3
(0.2)

3.2
(0.16)

3.2
(0.15)

3.2
(0.15)

3.2
(0.15)

3.7
(0.18)

3.2
(0.15)

3.7
(0.17)

e
�3.7
(0.2)

�3.7
(0.2)

�3.5
(0.2)

�3.4
(0.19)

�3.4
(0.19)

�3.4
(0.19)

�3.4
(0.19)

�4.0
(0.22)

�3.3
(0.18)

�3.9
(0.22)

b
�0.2
(0.1)

�0.2
(0.1)

�0.04
(0.07)

�0.05
(0.06)

�0.06
(0.06)

�0.07
(0.06)

�0.13
(0.06)

�0.08
(0.06)

�0.15
(0.06)

p
0.5
(0.1)

0.15
(0.09)

0.13
(0.12)

0.18
(0.09)

0.04
(0.09)

0.17
(0.13)

0.16
(0.11)

k
1.65
(0.21)

1.2
(0.15)

1.1
(0.14)

1.1
(0.17)

1.16
(0.15)

1.09
(0.18)

1.00
(0.13)

pMPH
0.08
(0.14)

0.09
(0.17)

�0.19
(0.14)

k MPH-

selective

0.09
(0.19)

0.22
(0.25)

k MPH-

diffuse

�5.9
(0.24)

�5.7
(0.21)

DOI: 10.7554/eLife.22169.024

Appendix 5—table 3. Confidence/probability that top-level parameter is larger than 0.

Base models Extended MPH models

M1 M2 M3a M3b M4 M5a M5b M5c M6a M6b

r 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b 0.00 0.00 0.29 0.17 0.13 0.12 0.01 0.09 0.01

p 1.00 0.96 0.87 0.98 0.70 0.91 0.91

k 1.00 1.00 1.00 1.00 1.00 1.00 1.00

pMPH 0.72 0.71 0.09

k MPH-selective 0.67 0.81

k MPH-diffuse 0.00 0.00

DOI: 10.7554/eLife.22169.025
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Appendix 5—figure 2. Average one-step-ahead predictions for the base models M2-4 over-

laid on the observations in grey. The one-step-ahead predictions indicate the action

probabilities as predicted by the model, using each subject’s actual choices and outcomes.
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Appendix 5—figure 3. Average one-step-ahead predictions for the extended MPH models

M5-6 overlaid on the observations in grey. The one-step-ahead predictions generate the

action probability of each choice, based on the history of the subject’s actual choices and

outcomes preceding the choice. The predictions are separately plotted for MPH (top) and

placebo (bottom). We observed no main effect of MPH on the motivational bias (i.e. more

Go to Win cues relative to Avoid cues). Accordingly, all models make highly similar

predictions under MPH and placebo across the group.
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We refer to the Decision Letter and Author Response for a discussion on the potential

confound of asymmetric reward/punishment sensitivities, where we show control analyses

that speak against this potential confound.
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